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1. Introduction

Laminated composite and sandwich beams are extensively used in
various manufacturing fields as main structural components. They have 
special advantages like high stiffness to mass ratio as well as superior 
strength to weight ratio. Development of efficient mathematical models 
for the estimation of structural responses of composite beams is a key 
issue. 

The composite beams are usually subjected to arbitrarily bending 
and/or torsional loads. Various laminated beam theories were intro
duced in the last two decades for modeling the pure bending behavior of 
composite and sandwich beams (e.g., layer-wise theories (Carrera, 2000; 
Reddy, 2004), zigzag theories (Icardi, 2001a, 2001b; Carrera, 2003; 
Katariya and Panda, 2019; Katariya et al., 2019), and global-local the
ories (Shariyat, 2010; Lezgy-Nazargah et al., 2011; Lezgy-Nazargah, 
2017; Beheshti-Aval and Lezgy-Nazargah, 2012)). On the other hand, 
torsion of beams has been a classical subject in solid mechanics. 
Coulomb proposed a solution for the approximation of torsional resis
tance of circular bars (Wunderlich and Pilkey, 2003). Coulomb’s 
formulation is based on the assumption that the cross-section of bars 
stay plane after torsion. By making assumptions on the deformations and 

using the semi-inverse method, Saint-Venant introduced an accurate 
solution for the torsion of bars (Timoshenko and Goodier, 1970). The 
assumed deformations of Saint-Venant include an unknown warping 
function. He computed this unknown warping function from the satis
faction of the equilibrium conditions as well as the free-conditions of 
stresses on surface boundaries. According to the Saint-Venant theory, 
the torsional stresses only take place if warping is unrestrained. The 
aforementioned condition is very rare in engineering practice. Indeed, 
warping is usually restrained at supports, at the location of imposed 
torsion moments and where the thickness of cross-section changes. To 
overcome the limitations of Saint-Venant’s theory, “restrained warping 
theory” or “non-uniform torsion theory” was developed by Vlasov 
(1959). 

By using Prandtl’s stress function, Savoia and Tullini (1993) intro
duced a formulation for the prediction of torsional-warping responses of 
composite beams with arbitrary cross-section. Based on eigenfunction 
expansion method, Swanson (1998) derived an exact solution for the 
response of rectangular laminated orthotropic beams under uniform 
torsion. Saygun et al. (2007) presented a 2D finite element model for 
calculation of torsional rigidity of the composite beams. They first 
derived the differential equation by using the Saint-Venant’s stress 
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function. Then, they obtained discretized form of partial differential 
equations by means of the finite element method. By including the ef
fects of shear forces and torsion in the formulations, El Fatmi (El Fatmi, 
2007) introduced a beam theory with a non-uniform warping. The beam 
theory of El Fatmi (El Fatmi, 2007) is valid for any homogeneous 
cross-section made of isotropic elastic material. El Fatmi’s beam theory 
is based on a kinematic which includes six independent unknown 
warping parameters and nine independent warping functions. Starting 
from this kinematic and using the principle of minimum potential en
ergy, El Fatmi derived his beam theory. Extension of El Fatmi’s beam 
theory for homogeneous and composite cross-sections is carried out in El 
Fatmi and Zenzri (El Fatmi and Zenzri, 2004). Based on anisotropic 
theory of elasticity and following the Sokolnikoff’s approach, Demakos 
(2003) determined stress and displacement components in the canti
lever fibre-reinforced composite laminate beams subjected to combined 
action of bending and torsion moments. El Fatmi and Ghazouani (El 
Fatmi and Ghazouani, 2011) proposed a high-order theory for analysis 
of composite beams under the action of bending/torsion loads. They 
modified Saint-Venant theory so that it could be used for the prediction 
of 3D stresses in the regions near the end-sections of beams. Ganapathi 
et al. (1999) introduced a finite element model for the analysis of rect
angular sandwich beams considering warping and transverse shear ef
fects. They obtained warping function of sandwich beam from a 3D 
elasticity solution. Santiuste et al. (2008) studied the dynamic behavior 
of laminated beams by using Flexibility Influence Function Method. The 
1D model of Santiuste and colleagues takes into account the effects of 
rotatory inertia, shear force, and bending–torsion coupling. 

In this paper an efficient numerical tool is developed for quasi-3D 
analysis of laminated composite and sandwich beams under combined 
transversal and torsional loading. Thus, a new multifiber finite element 
model with low degrees of freedom (dofs) is introduced. A displacement 
field which includes seven generalized displacement unknown param
eters and a 2D unknown warping function is assumed for representing 
the kinematic of beam. For both displacement components and trans
verse shear stresses, all continuity conditions are satisfied at the layer 
interfaces. Traction-free requirements of stresses on the boundary sur
faces of beam are also fulfilled in the present formulation. Thanks to the 
use of Cosine function for representing the transverse shear de
formations due to bending, the shear correction factor is not needed in 
the presented model. A 2D penalty-based finite element model has been 
developed to determine the unknown warping function of beam. A 1D 
three-node multifiber finite element is employed for the computation of 
generalized displacement unknown parameters of beam. For validation, 
results of the present model have been compared with the results ob
tained from 3D finite element simulation (ABAQUS), and numerical and 
analytical results reported by other researchers. These comparisons 
show that the present model can accurately predict the coupled bending 
and torsional-warping responses of laminated composite and sandwich 
beams by using small number of elements and degrees of freedom. 

This paper is organized as follows. Constitutive equations as well as 
kinematic relations of composite beams are introduced in section 2. 
Penalty-based finite element model employed for the computation of 
restrained warping function of composite beams is described in Section 
3. Three-node 1D multifiber finite element developed for the approxi
mation of unknown variables of displacement field is introduced in
Section 4. Validation examples and discussion on numerical results are
given in Section 5. Conclusions and comments for the future researches
are presented in Section 6.

2. Basic equations

2.1. Geometry and coordinate system

As depicted in Fig. 1, a straight composite beam with a rectangular 
cross-section is considered in the present study. It is made of NC layers 
with different material properties. The material of each layer is assumed 

to be homogeneous, linearly elastic and transversely isotropic in the 
beam axes. As depicted in Fig. 1, the rectangular Cartesian coordinate 
system (x,y,z) is considered for studying the structural behavior of 
composite beams. The x-axis is along the length, y-axis is along the width 
and z-axis is along the height of beam. y- and z-axis intersect each other 
at the centroid of the composite cross-section, i.e. point “O”. 

2.2. Constitutive law 

By neglecting the effects of transverse normal stresses (σk
yy ¼ σk

zz ¼

0), the constitutive law for the kth layer of beam can be expressed as: 

σk ¼Ckεk (1)  

where 

σk ¼
h
σk

xx σk
yz σk

xz σk
xy
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Fig. 1. The composite beam and Cartesian coordinate system.  
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and Cij, σij and εij denote the 3D elastic material constants, stress, and 
strain components, respectively. 

2.3. Kinematic descriptions 

2.3.1. Torsional-warping around x-axis.Displacement components 
corresponding to the kth layer at an arbitrary point P(x,y,z) due to torsion 
and warping can be expressed as 

Uk
t ðx; y; zÞ¼φkðy; zÞγðxÞ

Vk
t ðx; y; zÞ¼ � ðz � ztÞθxðxÞ

Wk
t ðx; y; zÞ¼ ðy � ytÞθxðxÞ (2)  

where Uk
t , Vk

t and Wk
t are the displacement components of composite 

beam due to torsion and warping along x, y and z directions, respec
tively. φkðy; zÞ is the restrained warping function which describes the 
distortion of beam in the longitudinal direction due to warping. γ is an 
unknown parameter which represents the intensity of torsional rotation 
gradient in the length direction. The torsional rotation of the cross- 
section around the x-axis is represented by θxðxÞ. Finally, ðyt ; ztÞ repre
sents the position of twist center with respect to the Coordinate system 
(x,y,z). In the Saint-Venant’s theory of torsion, which is valid only for 
constant warping and no restraints at the ends, it is proved that the 
cross-section twists about the centroid. In case of restrained torsion, the 
cross-section twists about twist center. Twist or shear center is a fixed 
point in the cross-section which does not move due to torsion. By using 
the transformation of coordinates, φðy; zÞ can be defined with respect to 
unrestrained warping function φðy; zÞ as below (Connor, 1976): 

φðy; zÞ¼ �
1
Ω

Z

Ω
φðy; zÞ dΩ � ztyþ ytzþ φðy; zÞ (3)  

where Ω denotes the total area of cross-section. The location of the twist 
center can be calculated from the following relations (Connor, 1976): 

yt ¼ �

Z

Ω
zφ ðy; zÞdΩ

�Z

Ω
z2 dΩ (4.a)  

zt ¼

Z

Ω
yφ ðy; zÞdΩ

�Z

Ω
y2 dΩ (4.b) 

Eq. (2) can be written as the following matrix form: 

Λk
t ¼Ok

t ut (5)  

where Λk
t ¼

�
Uk

t Vk
t Wk

t
�T, ut ¼ f θx γ gT and 

OðkÞt ¼

2

4
0 φkðy; zÞ

� ðz � ztÞ 0
ðy � ytÞ 0

3

5

Based on well-known displacement-strain relations, the following 
matrix expression are obtained for the strain components due to torsion 
and warping of composite beam: 

8
>>>>>><

>>>>>>:

εtðkÞ
xx

2εtðkÞ
yz

2εtðkÞ
xz

2εtðkÞ
xy

9
>>>>>>=

>>>>>>;

¼

2
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6
6
6
6
6
6
6
6
6
4

0 φk d
dx

0 0

y
d
dx

∂φk

∂z

� z
d
dx

∂φk

∂y

3

7
7
7
7
7
7
7
7
7
7
5

�
θx
γ

�

(6.a)  

or 

εk
t ¼Bk

t ut (6.b) 

In Eq. (6.a), the superscript “t” represents the torsional-warping 
contribution of strain components. Note that the torsional-warping 
contribution of axial displacement and transverse shear stress in x-z 
plane must be continuous at the interface between layers. In section 3, 
warping function φkðy; zÞwill be determined by enforcing the continuity 
conditions of Uk

t and σtðkÞ
xz at the interface between layers. 

2.3.2. Axial extension and bending in x-y plane 
Displacement components due to axial extension as well as bending 

in x-y plane can be expressed as: 

Uk
b2ðx; y; zÞ¼ uðxÞ � ðy � ycÞ

dvðxÞ
dx
þ

�

θzðxÞþ
dvðxÞ

dx

�

f ðyÞ

Vk
b2ðx; y; zÞ¼ vðxÞ

Wk
b2ðx; y; zÞ¼ 0 (7)  

where fðyÞ ¼ b
π sin

�
πðy� ycÞ

b

�
and sub-function uðxÞ represents the uniform 

extension of cross-section of the beam along x-axis. vðxÞ is bending 
deflection along y direction, and θzðxÞ is independent shear bending 
rotation around the z axis. The matrix form of Eq. (7) is given by: 

Λk
b2¼Ok

b2ub2 (8)  

where Λk
b2 ¼

�
Uk

b2 Vk
b2 Wk

b2
�T, ub2 ¼ f u v θz g

T and 

Ok
b2¼

2

6
6
6
4

1 ðyc � yþ f ðyÞÞ
d
dx

f ðyÞ

0 1 0

0 0 0

3

7
7
7
5

Strain components due to uniform extension and bending in x-y 
plane can be written as below: 

8
>>>>>><

>>>>>>:

εb2ðkÞ
xx

εb2ðkÞ
yz

εb2ðkÞ
xz

εb2ðkÞ
xy

9
>>>>>>=

>>>>>>;

¼

2

6
6
6
6
6
6
6
6
6
4

d
dx
ðyc � yþ f ðyÞÞ

d2

dx2 f ðyÞ
d
dx

0 0 0

0 0 0

0
df ðyÞ

dy
d
dx

df ðyÞ
dy

3

7
7
7
7
7
7
7
7
7
5

8
<

:

u
v
θz

9
=

;
(9.a)  

or 

εk
b2¼Bk

b2ub2 (9.b) 

Thanks to representing the transverse shear strain by using a cosine 
function, it is obvious that the free traction requirements of transverse 
shear stress on the planes y ¼ b=2 � yt and y ¼ � b=2 � yt is satisfied. 
Thus, no shear correction factor is needed for the bending in x-y plane. 

2.3.3. Bending in x-z plane 
Based on refined sinus beam theory (Vidal and Polit, 2008; Behesh

ti-Aval et al., 2011; Lezgy-Nazargah et al., 2015), pure bending in x-z 
plane can be defined by the following relations: 

Uk
b3ðx; y; zÞ¼ � ðz � zcÞ

dwðxÞ
dx
þ

�

θyðxÞþ
dwðxÞ

dx

�

FðzÞ þ ulocðxÞSðzÞ

Vk
b3ðx; y; zÞ¼ 0

Wk
b3ðx; y; zÞ¼wðxÞ (10)  

wðxÞ denotes bending deflection along z direction. θyðxÞ is independent 
shear bending rotation around the y axis, and ulocðxÞ is a local unknown 
parameter related to the first layer. The functions FðzÞ and SðzÞ are given 
below: 
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F z

!

¼
h
π sin

πðz � zcÞ

h

!

þ
XNC

k¼1

�

ξkβk
1þ

�
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5ξ3
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!

� H z � zk

!
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!!

(11)  

S z

!

¼
XNC

k¼1

�

ξkδk
1þ

�
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1
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þ

3ξ2
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2

!

δk
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2
þ

5ξ3
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2

!
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3

!

� H z � zk

!
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!!

(12)  

ξk ¼
2ðz � zcÞ

zkþ1 � zk
�

zkþ1 þ zk

zkþ1 � zk
(13)  

H is Heaviside’s function. δk
i and βk

i (i ¼ 1,2,3) are the continuity co
efficients which depend only on normal coordinate z and shear modulus 

of layers (i.e. Ck
55). Some of these coefficients can be computed from the 

continuity requirements Uk
b3 at the interface of adjacent layers. Other 

coefficients can be obtained from the necessity that the bending 
contribution of transverse shear stress in x-z plane is continuous at the 
interface of adjacent layers and disappears at the upper and lower sur
faces of the beam. For more details about coefficients δk

i and βk
i , inter

ested readers can refer to (Vidal and Polit, 2008; Beheshti-Aval et al., 
2011; Lezgy-Nazargah et al., 2015; Beheshti-Aval and Lezgy-Nazargah, 
2010). Similar to bending in x-y plane, shear correction factor is not 
required for bending in x-z plane. The following expression gives the 
matrix form of Eq. (10): 

Λk
b3¼Ok

b3ub3 (14)  

where Λk
b3 ¼

�
Uk

b3 Vk
b3 Wk

b3
�T, ub3 ¼

�
w θy u1

loc
�T and 

Ok
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Strain components due to bending in x-z plane may be expressed as 
the following matrix form: 
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(15.a)  

or 

εk
b3¼Bk

b3uk
b3 (15.b)  

2.3.4. Coupled bending and torsion-warping 
Displacement field of composite beam under coupled bending and 

torsional-warping loading conditions is obtained by the superimposition 
of displacement fields given in Eqs. (2), (7) and (10): 

Uðx; y; zÞ ¼ uðxÞ � ðz � zcÞ
dwðxÞ

dx
þ

�

θyðxÞ þ
dwðxÞ

dx

�

FðzÞ þ SðzÞ ulocðxÞ

� ðy � ycÞ
dvðxÞ

dx
þ

�

θzðxÞ þ
dvðxÞ

dx

�
b
π sin

�πðy � ycÞ

b

�
þ φðkÞðy; zÞγðxÞ

Vðx; y; zÞ¼ vðxÞ � ðz � ztÞθxðxÞ

Wðx; y; zÞ¼wðxÞ þ ðy � ytÞθxðxÞ (16)  

3. Calculation of warping function

In this section, a penalty-based 2D finite element model is derived for
the calculation of unrestrained warping function φkðy; zÞ. All calcula
tions have been carried out in the Cartesian Coordinate system (x,y,z). 
As stated before, y- and z-axis intersect each other at point “O”, which 
coincides with the centroid of the composite cross-section. Indeed, the 
location of point “O” can be obtained based on the satisfaction of the two 
following equations: 

XNC

k¼1

Z

Ωk
Ck

55z dΩ¼ 0 (17.a)  

XNC

k¼1

Z

Ωk
Ck

66y dΩ¼ 0 (17.b)  

3.1. Weak formulation 

The following Laplace equation with Neumann boundary conditions 
must be satisfied by the warping function φkðy; zÞ (Connor, 1976): 

CðkÞ66
∂2φk

∂y2 þCðkÞ55
∂2φk

∂z2 ¼ 0 on Ωk (18.a)  

CðkÞ66

�
∂φk

∂y
� z
�

λk
y þCðkÞ55

�
∂φk

∂z
þ y
�

λk
z ¼ 0 in Γk (18.b)  

where are Ωk and Γk denote the domain and boundary of kth layer, 
respectively. λk

y and λk
z are the components of unit vector normal to the 

boundary Γk. Multiplying Eq. (18.a) by the virtual warping function δφk, 
and integrating it over Ω gives: 

XNC

k¼1

Z

Ωk
δφk
�

CðkÞ66
∂2φk

∂y2 þCðkÞ55
∂2φk

∂z2

�

dΩ ¼ 0 (19) 

Based on product rule of differentiation, we have 

∂
∂y

�

δφk∂φk

∂y

�

¼
∂
∂y
�
δφðkÞ

� ∂φk

∂y
þ δφðkÞ

∂2φk

∂y2 (20.a)  

∂
∂z

�

δφk∂φk

∂z

�

¼
∂
∂z
�
δφk� ∂φk

∂z
þ δφk∂2φk

∂z2 (20.b) 

Thus, Eq. (19) can be rewritten as follow: 

XNC

k¼1

Z

Ωk
δφk
�

CðkÞ66
∂
∂y

�

δφk∂φk

∂y

�

þCðkÞ55
∂
∂z

�

δφk∂φk

∂z

�

� CðkÞ66
∂
∂y
�
δφk� ∂φk

∂y

� CðkÞ55
∂
∂z
�
δφk� ∂φk

∂z

�

dΩ¼ 0 (21) 

By using the Gauss Divergence Theorem, the first two area integral 
terms of Eq. (21) can be converted to line integrals as below: 
Z

Ωk

∂
∂y

�

δφk∂φk

∂y

�

dΩ¼
I

Γk
δφk ∂φk

∂y
λk

ydΓ (22.a)  

Z

Ωk

∂
∂z

�

δφk∂φk

∂z

�

dΩ¼
I

Γk
δφk ∂φk

∂z
λk

zdΓ (22.b) 

Substitution of the above two equations into Eq. (21) gives: 
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XNC
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∂
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z

�
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(22) 

By considering the boundary condition of Eq. (18.b), Eq. (22) can be 
rewritten as below: 

XNC
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�
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∂
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or 
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!
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(23.b) 

Equation (23) represents the weak formulation of Eq. (18). At the 
interface between layers, the displacement component UðkÞt , in-plane 
shear strain εtðkÞ

xy , and transverse shear stress σtðkÞ
xz must be continuous 

along the interface zkþ1. The foresaid conditions require satisfying the 
following relations: 

φkþ1ðy; z¼ zkþ1Þ¼φkðy; z¼ zkþ1Þ (24.a)  

φkþ1
;y ðy; z¼ zkþ1Þ¼φk

;yðy; z¼ zkþ1Þ (24.b)  

Ckþ1
55

∂φkþ1ðy; z ¼ zkþ1Þ

∂z
� Ck

55
∂φkðy; z ¼ zkþ1Þ

∂z
¼
�
Ck

55 � Ckþ1
55

�
y (24.c)  

where k ¼ 1; 2; 3; …․; NC � 1. The above constraints will be tackled at 
the weak formulation by using the penalty approach. Note that Eq. (24. 
c) is obtained based on Saint-Venant assumption, i.e. γ ¼ dθx= dx. Thus,
interface continuity conditions for transverse shear stresses due to
warping and torsion may not completely be fulfilled at the interfaces. In
the numerical evaluations of the present formulation, it will be verified
that this simplifying assumption leads to results with enough accuracy.

3.2. FE formulation 

As depicted in Fig. 2, the cross-section of composite beam is dis
cretized into arbitrary sub-domains Ωk

e whose boundary is Γk
e . It is 

assumed that each arbitrary sub-domain Ωk
e represents a 4-node rect

angular element. For the approximation of warping function on each 
element domain, the full compatible Hermite’s shape functions which 
ensures C1-type continuity of warping function along y and z directions, 
are employed: 

φk ffi N bΦ
k
e (25) 

Interpolation matrix N and warping nodal variable vector bΦ
k
e are 

defined as follows: 

bΦ
k
e ¼
h
bΦ

k

g1

bΦ
k

g2

bΦ
k
g3

bΦ
k
g4

iT
(26)  

N¼ ½N11 N21 N12 N22� (27) 

The sub-matrices appeared in the above Eqs. (26) and (27) are given 
by: 

Nfq¼
�
H0f ðξÞH0qðηÞ H1f ðξÞH0qðηÞ H0f ðξÞH1qðηÞ H1f ðξÞH1qðηÞ

�
ðf ; q¼ 1; 2Þ

(35)  

bΦ
k
g1
¼
h
bφk

g1
bφk

g1 ;y bφk
g1 ;z bφk

g1 ;yz

i
(36.a)  

bΦ
k
g2
¼
h
bφk

g2
bφk

g2 ;y bφk
g2 ;z bφk

g2 ;yz

i
(36.b)  

bΦ
k
g3
¼
h
bφk

g3
bφk

g3 ;y bφk
g3 ;z bφk

g3 ;yz

i
(36.c)  

bΦ
k
g4
¼
h
bφk

g4
bφk

g4 ;y bφk
g4 ;z bφk

g4 ;yz

i
(36.d)  

where ξ and η are the local coordinates of element and are chosen to be 
along y and z directions, respectively. HακðχÞ ðα¼ 0; 1; κ ¼ 1;2; χ¼ ξ; ηÞ
are the classical Hermite’s shape functions: 

H01ðχÞ ¼
1
4
ð1 � χÞ2ð2þ χÞ H02ðχÞ ¼

1
4
ð2 � χÞð1þ χÞ2

H11ðχÞ ¼
lχ

8
ð1 � χÞ2ð1þ χÞ; H12ðχÞ ¼ �

lχ

8
ð1 � χÞð1þ χÞ2 (37)  

lχ is the length of the element along χ direction. It is worth to be noted 

that the vector bΦ
k
e contains the nodal values of the warping function and 

its derivatives. Consideration of bφk
i;y and bφk

j;y as independent degrees of 

freedom guarantees the continuity of transverse shear stress σtðkÞ
xy and 

σtðkÞ
xz between adjacent elements of the kth layer. Substituting Eq. (25) 

into (23) yields: 

Fig. 2. Discretization of the cross-section by using 4-node Hermitian elements.  
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δ
1
2
XNC

k¼1

Xm
k
e Z

Ωk
e

�

CðkÞ66
bΦ

kT
e

∂N
∂y

T ∂N
∂y
bΦ

k
e þ CðkÞ55

bΦ
kT
e

∂N
∂z

T ∂N
∂z
bΦ

k
e

�

dΩ

!

�
XNC

k¼1

Xm
k
e Z

Γk
e

bΦ
kT
e NT CðkÞ66 λk

yz � CðkÞ55 λk
z y

!

dΓ

!!

¼ 0

(38)  

where mk
e denotes the number of cross-sectional elements of kth layer. In 

the above discrete weak formulation, the constraint conditions (24.a)- 
(24.c) are not considered. For satisfying these constraints by using the 
penalty finite element approach, Eq. (38) must be modified as below: 

δ
1
2
XNC

k¼1

Xm
k
e Z

Ωk
e

�

CðkÞ66
bΦ

kT
e

∂N
∂y

T ∂N
∂y
bΦ

k
e þ CðkÞ55

bΦ
kT
e

∂N
∂z

T ∂N
∂z
bΦ

k
e

�

dΩ

!

�
XNC

k¼1

Xm
k
e Z

Γk
e

bΦ
kT
e NT

�
CðkÞ66 λk

yz � CðkÞ55 λk
zy
�

dΓ

!

þ
1
2
pφ

XNC� 1

k¼1

Xnzkþ1

i;j¼1

�
bφkþ1

i � bφk
j

�2
!

þ
1
2

pφ;y

XNC� 1

k¼1

Xnzkþ1

i;j¼1

�
bφkþ1

i;y � bφ
k
j;y

�2
!

þ
1
2
pφ;z

XNC� 1

k¼1

Xnzkþ1

i;j¼1

�
Ckþ1

55 bφ
kþ1
i;z � Ck

55bφ
k
j;z �

�
Ck

55 � Ckþ1
55

�
yi

�2
!!

¼ 0

(39)  

where pφ, pφ;y and pφ;z are the penalty parameters and nzkþ1 denotes the 
number of adjacent nodes along the interface z ¼ zkþ1. Eq. (39) leads to 
a set of simultaneous equations to be solved for the nodal values of the 
trial solution φkðy; zÞ. The matrix form of this set of equations is as 
follow: 
�
KþKφþKφ;y þKφ;z

�
bΦ¼QþQφ;z (40)  

where 

K¼
Xme

Ke; bΦ ¼
Xme

bΦ
k
e; Q ¼

Xme

Qe

and me denotes the total number of cross-sectional elements. The 
elementary matrices Ke and Qe are defined as follows: 

Ke¼

Z

Ωk
e

�
∂N
∂y

T ∂N
∂y
þ

∂N
∂z

T ∂N
∂z

�

dydz (41.a)  

Qe¼

I

Γk
e

NT
�

λk
yz � λk

zy
�

dΓ (41.b) 

Kφ, Kφ;y and Kφ;z are n� n matrices, which n denotes the total 
number of nodal variables. Qφ;z 

is a vector with size n� 1. Details about 
the calculation of arrays of matrices Kφ, Kφ;y , Kφ;z and Qφ;z 

are given in 
Appendix A. 

Thus, one can calculate the nodal values of the warping function 
from Eq. (40). The torsional (J) and warping ðCwÞ constants, which are 
cross-sectional properties, can be also obtained from the following re
lations (Connor, 1976): 

J¼
Z

Ω

�

y2þ z2 þ y
∂φ
∂z
� z

∂φ
∂y

�

dΩ (42.a)  

Cw¼

Z

Ω
φ2ðy; zÞ dΩ (42.b)  

Remark. The 2D finite element introduced in this section is not 

restricted to rectangular laminated cross-sections. It can be easily used 
for the calculation of torsional-warping properties of composite beams 
with arbitrary cross-sections by modifying the constraint conditions (24. 
a)-(24.c). 

4. FE formulation for the composite beam

4.1. Interpolation of displacement field variables 

A 1D FE formulation is developed here for the prediction of struc
tural responses of composite beams under combined loads. To this aim, 
the unknown variables of displacement field must be approximated 
properly. In addition to warping function φkðy; zÞ, the present beam 
model has eight unknown field variables uðxÞ, vðxÞ, wðxÞ, ulocðxÞ, θxðxÞ, 
θyðxÞ, θzðxÞ and γðxÞ. It is assumed that the composite beam is longitu
dinally divided into ne multifiber elements. A multifiber element with 
length le is shown in Fig. 3. Every longitudinal multifiber element is 
made of me fibers. It should be noted that the number and the geomet
rical properties of the fibers must be in accordance with 2D mesh used 
for solving the warping function φkðy;zÞ. As shown in Fig. 3, every fiber 
of beam can be mathematically replaced with a 1D three-node fiber 
element. 

Based on assumed kinematic (i.e. Eq. (16)), the bending deflections 
vðxÞ, wðxÞ should be C1-continuous over domain of a fiber. Thus, the 
variables vðxÞ, wðxÞ at each fiber are interpolated by classic Hermite 
cubic functions. C0-continuity is enough for the interpolation of other 
field variables. They can be approximated via linear Lagrange’s shape 
functions. However, quadratic Lagrange’s shape functions are employed 
for the interpolation of bending variables θyðxÞ, θzðxÞ and ulocðxÞ. Due to 
the field consistency principle (Ganapathi et al., 1999; Vidal and Polit, 
2008; Beheshti-Aval et al., 2011; Lezgy-Nazargah et al., 2015), this 
interpolation choice prevents from the appearance of transverse shear 
stress locking phenomena. Finally, uðxÞ, θxðxÞ, and γðxÞ are interpolated 
by using linear Lagrangian shape functions. Therefore, unknown field 
variables uðxÞ, vðxÞ, wðxÞ, ulocðxÞ, θxðxÞ, θyðxÞ, θzðxÞ and γðxÞ can be 
written with respect to their nodal variables as below: 

Fig. 3. Description of the composite beam element and constitutive fibers.  
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u¼NLLbue
u (43.a)  

v¼NHbue
v (43.b)  

w¼NHbue
w (43.c)  

θy¼NQLbue
θy

(43.d)  

θz¼NQLbue
θz

(43.e)  

uloc¼NQLbue
uloc

(43.f)  

θx¼NLLbue
θx

(43.g)  

γ¼NLLbue
γ (43.h) 

bue
u, bue

v, bu
e
w, bue

θy , bu
e
θz , bu

e
θx

, bue
uloc 

and bue
γ are the vectors of degrees of 

freedom of the fiber elements while NLL, NH and NQL are interpolating 
matrices. Details of the mentioned vectors and matrices are given in 
Appendix B. 

The considered 3-node fiber element and its assumed local coordi
nate system are shown in Fig. 4. Note that all constitutive fibers of a 
beam element have the same degrees of freedom. Only nodal values 
related to warping function φkðy; zÞ are different at each fiber element. 

By substituting Eq. (43) into Eqs. (5), (8) and (14), the displacement 
components of composite beam can be rewritten in the following matrix 
forms: 

Λk
t ¼Ok

t Ntbue
t (44.a)  

Λk
b2¼Ok

b2Nb2bue
b2 (44.b)  

Λk
b3¼Ok

b3Nb3bue
b3 (44.c)  

where bue
t ¼

�
bue

θx
bue

γ
�T, bue

b2 ¼
�
bue

u bue
v bue

θz

�T, bue
b3 ¼

�
bue

w bue
θy

bue
uloc

�Tand 

Nt ¼

"
NT

LL 0
0 NT

LL

#

; Nb2¼

2

6
6
4

NT
LL 0 0
0 NT

H 0
0 0 NT

QL

3

7
7
5; Nb3¼

2

6
6
6
4

NT
H 0 0

0 NT
QL 0

0 0 NT
QL

3

7
7
7
5

Similarly, strain components of composite beam (Eq. (6), (9) and 
(15)) can be expressed as: 

εk
t ¼Bk

t Ok
t Ntbut ¼ Аk

t bu
e
t (45.a)  

εk
b2¼Bk

b2Ok
b2Nb2bub2 ¼ Аk

b2bub2 (45.b)  

εk
b3¼Bk

b3Ok
b3Nb3bub3 ¼ Аk

b3bub3 (45.c)  

4.2. Weak formulation of the boundary value problem 

The total potential energy of the considered composite beam can be 
represented as below: 

Π¼
Xne Z le

0

�
Xme Z

Ωe

�
εkT

t σk
t þ εkT

b2 σk
b2 þ εkT

b3 σk
b3

�
dydz

�

dx  

�
Xne Z le

0

�
Xme Z

Ωe

�
ΛkT

t þ ΛkT
b2 þ ΛkT

b3

�V
P dydz

�

dx  

�
Xne Z le

0

XNC

k¼1

�
ΛkT

t þΛkT
b2 þ ΛkT

b3

�
Ps

!

dx (46)  

where PV and Psvector of body and surface loads, respectively. 
Substituting Eqs. (1) and (44)-(45) into the above equation gives the 
total potential energy with respect to the nodal variables of composite 
beam. Based on the principle of minimum potential energy, the nodal 
variables of beam can be obtained by solving the following n� n linear 
system of equations: 

Kbeam bu¼F (47)  

where n denotes the total number of nodal variables of composite beam. 
K, bu and F are total stiffness matrix, nodal variables vector and total 
force vector, respectively. The aforementioned matrices are obtained 
after calculation and assembling the corresponding elementary matrices 
as below: 

Kbeam¼
Xme�ne

2

6
6
4

Ke
t 0 0

0 Ke
b2 0

0 0 Ke
b3

3

7
7
5; bu¼

Xme�ne

8
>><

>>:

bue
t

bue
b2

bue
b3

9
>>=

>>;

; F¼
Xme�ne

8
>><

>>:

fe
t

fe
b2

fe
b3

9
>>=

>>;

þ
XNC�ne

8
>><

>>:

pe
t

pe
b2

pe
b3

9
>>=

>>;

(48)  

where 

Ke
ι ¼

Z le

0

Z

Ωe

�
АkT

ι CkАk
ι
�
dydzdx; ðι¼ t; b2; b3Þ

fe
ι ¼

Z le

0

Z

Ωe

�
NT

ι OkT
ι PV

�
dydzdx; ðι¼ t; b2; b3Þ

pe
ι ¼

Z le

0

�
NT

ι OkT
ι Ps

�
dx; ðι¼ t; b2; b3Þ

Remark. on the present finite element model. The multifiber finite 
element formulation introduced in the previous sections, indeed, de
couples the problem of 3D analysis of laminated composite and sand
wich beams under combined loads into 2D cross-sectional analysis and 
1D beam analysis. This concept is shown schematically in Fig. 5. 

5. Numerical results

The aim of this section is to evaluate the accuracy of the presented
penalty-based finite element model for the bending and torsional- 
warping analysis of composite beams. Composite beams with various 

Fig. 4. Three-node fiber element: local coordinate system and nodal degrees 
of freedom. 
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cross-sections are analyzed by using the present formulation. The results 
of 3D finite element analysis as well as the previous published reports 
are employed for the comparison purposes. 

5.1. Cross-sectional analysis of composite sections with different 
configurations 

In this example, torsional rigidity and coordinates of twist center of 
some composite cross-sections with different configurations are deter
mined by using the penalty-based finite element model described in 
Section 3. The geometrical characteristics of considered composite 
cross-sections as well as considered Coordinate system (Y,Z) are shown 
in Fig. 6. In this figures, Y- and Z-axes intersect each other at centroid of 
homogenous cross-section. 

The convergence of the present penalty-based finite element model 
to evaluate the torsional properties of composite cross-sections is studied 
in Table 1. In this table, fGJ denotes the torsional rigidity of composite 
cross-section while ðGJÞ1 is the torsional rigidity of the corresponding 
homogenous cross-section made of material 1. Mechanical properties 
assumed for the material 1 and 2 are given in Table 1. It is seen that the 
proposed finite element model has a fast convergence and few elements 
are needed to predict the torsional constant as well as the position of 
twist center. 

In Table 2, the accuracy of the present results are evaluated through 
comparison with other available results. 2D finite element results of 
Saygun et al. (2007) and 3D finite element results of El Fatmi and Zenzri 
(El Fatmi and Zenzri, 2004) are chosen for comparison purposes. One 
can see that the present results are in good agreement with those of 
previous works. Saygun et al. (2007) carried out their numerical 
implementations based on Saint-Venant’s stress function by using 
4-noded 2D elements. The results of El Fatmi and Zenzri (El Fatmi and
Zenzri, 2004) is based on an exact elastic beam theory. They used 3D
20-node brick elements for the computations of operators involved in
their beam theory. However, the present results are obtained by using
lower number of elements and degrees of freedom.

5.2. Cross-sectional analysis of a three-part composite section 

Torsion and warping cross-sectional properties of a composite beam 
are calculated in this section. The considered composite beam is a can
tilevered one with length L ¼ 6 m. The geometrical characteristic of the 
beam cross-section as well as the considered Coordinate system are 
depicted in Fig. 7. The origin of the Coordinate system (y,z) is coincided 
on the centroid of composite cross-section. As shown in Fig. 7, the cross- 
section of the beam is made of three rectangular parts with different 
materials. Mechanical properties of materials 1, 2 and 3 are given in 
Table 3. 

Fig. 5. Modeling of composite beams by using the present formulation: sche
matic representation. 

Fig. 6. Geometrical and mechanical characteristics of composite cross-section 
with different configurations: (a) Case 1, (b) Case 2, (c) Case 3. 
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The composite cross-section is discretized by using rectangular ele
ments with size 1 cm� 1 cm. The convergence mesh study shows that 
the chosen value for the size of elements is enough for a cross-sectional 
analysis. The torsional constant, warping constant as well as the co
ordinates of twist center of composite cross-section are given in Table 4. 

In this table, the present penalty-based finite element results are 
compared with boundary element results (Sapountzakis and Dour
akopoulos, 2010), and finite element results by using linear triangle 
elements (Stoykov et al., 2015). It is observed that the results of the 
present model are in very good agreement with the results of other 
researchers. 

Distribution of warping function φðy; zÞ over the three-part com
posite cross-section is shown in Fig. 8. In this figure, the results of the 
proposed formulation are compared with the results obtained by Stoy
kov et al. (2015). It is seen that the results of two different methods are 
in very good agreement quantitatively and qualitatively. 

Remark. The above two examples approve the efficiency of the 2D 
penalty-based finite element formulation given in Section 3 for warping 
cross-sectional analysis. 

5.3. A cantilever sandwich beam under pure torsion 

A three-layer sandwich beam is analyzed in this section. The 
considered sandwich beam is a cantilever one and torque load of T ¼
1000  kN m is applied at its free end. The length of beam is L ¼ 1000 mm 
and its wide is b ¼ 400 mm. The thickness of core layer is hc ¼ 80 mm 
while the thickness of outer layers (skin) are hs ¼ 10 mm. The material 
properties of layers are as below: 

Skin layers: E1 ¼ 3.0 GPa, E2 ¼ 0.8 GPa, G12 ¼ 1.05 GPa, G22 ¼ 1.05 
GPa, V12 ¼ V22 ¼ 0.31. 

Core layer: E ¼ 60.0 MPa, G ¼ 21.0 MPa, V ¼ 0.428. 
First, a convergence test was carried out by varying the number of 

axial and cross-sectional elements. The values of torsional rotation θ and 
warping parameter γ at the free end of the sandwich beam are calculated 
with considering different number of axial and cross-sectional elements. 
The results are shown in Table 5. It can be observed from this table that 
the values of θ and γ are almost insensitive to the number of cross- 
sectional elements. It is also seen that the warping parameter γ has a 
high convergence velocity. Only 5 axial elements are enough for the 
evaluation of the warping parameter γ. Convergence velocity of the 
torsional rotation θ is lower and at least 20 axial elements is required. 
Based on numerical results of Table 5, it is inferred that a mesh including 
20 axial elements as well as 60 cross-sectional elements is enough for an 
accurate approximation of torsional rotation θ and warping parameter γ. 

The sensitivity of in-plane normal displacement (U) and shear stress 
components (σxyσxz) against the number of cross-sectional elements is 
investigated in Table 6. The results of this table are obtained by 
employing 20 axial elements. It is seen that the value of in-plane normal 
displacement is not sensitive with respect to cross-sectional meshing and 

Table 1 
Results of mesh convergence study to evaluate the torsional properties of com
posite cross-sections.  

Case no. Mechanical properties No. elements fGJ =ðGJÞ1 ðyt ; ztÞ

1 E1 ¼ 72.95 GPa  48 0.5286 (0.00,-4.84) 
E2 ¼ 10.67 GPa  192 0.5264 (0.00,-4.85) 
v1 ¼ v2 ¼ 0.33  384 0.5264 (0.00,-4.85)  

768 0.5264 (0.00,-4.85) 
2 E1/E2 ¼ 50  3 0.0307 (0.00,0.00) 

v1 ¼ 0  12 0.0306 (0.00,0.00) 
v2 ¼ 0.45  48 0.0305 (0.00,0.00)  

96 0.0305 (0.00,0.00)  
192 0.0305 (0.00,0.00) 

3 E1 ¼ 1 GPa  2 0.8262 (0.00,-0.721) 
E2 ¼ 1 GPa  8 0.8261 (0.00,-0.722) 
v1 ¼ 0  50 0.8261 (0.00,-0.722) 
v2 ¼ 0.45  100 0.8261 (0.00,-0.722)  

200 0.8261 (0.00,-0.722)  
800 0.8261 (0.00,-0.722)  

Table 2 
Comparison of torsional properties of composite cross-sections obtained by 
different methodes   

El Fatmi and Zenzri (El 
Fatmi and Zenzri, 2004) 

Saygun et al. ( 
Saygun et al., 
2007) 

Present 

Case 
1 

fGJ=ðGJÞ1 0.5249 0.5250 0.5264 

ðyt ;ztÞ (0.0,-4.90) – (0.00,- 
4.85) 

No. 
elements 

200 3072 192 

Case 
2 

fGJ=ðGJÞ1 0.0307 0.0391 0.0305 

ðyt ;ztÞ (0.00,0.00) – (0.00,0.00) 
No. 
elements 

200 1250 48 

Case 
3 

fGJ=ðGJÞ1 0.8251 0.8250 0.8261 

ðyt ;ztÞ (0.00,-0.723) – (0.00,- 
0.722) 

No. 
elements 

200 1500 8  

Fig. 7. Geometrical parameters of three-part composite cross-section.  

Table 3 
Mechanical properties of the three-part composite cross-section.   

Material 1 Materials 2 Materials 3 

Young modulus (GPa) 29 210 210 
Poisson’s ratio 0.3 0.3 0.3  

Table 4 
Torsional constant, warping constant and the position of twist center for the 
three-part composite cross-section.   

Boundary element ( 
Sapountzakis and 
Dourakopoulos, 2010) 

Finite element ( 
Stoykov et al., 
2015) 

Present 

fGJ=G1(m4)  9.226E-03 9.249E-03 9.340E- 
03 

gECw=E1((m6)  1.755E-04 1.754E-04 1.747E- 
04 

yt (m)  0.0 0.0 0.00 
zt (m)  5.02E-02 5.09E-02 5.14E- 

02  
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it can be estimated accurately by using only 60 cross-sectional elements. 
As can be clearly observed from Table 6, the values of in-plane and 
transverse shear stresses are sensitive with respect to cross-sectional 
meshing and a relatively large number of cross-sectional elements are 
required to obtain the converged values. Based on mesh convergence 
results of Tables 5 and 6, one can conclude that a mesh including 20 
axial elements as well as 600 cross-sectional elements is enough for the 
estimation of generalized displacement and stress components of the 
sandwich beam by using the present penalty-based multifiber finite 
element model. 

Fig. 9 shows variations of transverse shear stress σxz along the 
thickness and width of sandwich beam. Variations of in-plane stress σxy 

along the width at the interface between core and skin layers are shown 
in Fig. 10. In these figures, results of present model are compared with 
1D finite element results of Ganapathi et al. (1999) as well as 3D finite 
element solutions. It is noted that the formulation of Ganapathi and 
colleagues is based on a sinus shear deformation beam theory which 
includes torsional-warping effects. Ganapathi et al. (1999) obtained 
warping function from a 3D elasticity solution. Concerning the 3D finite 
element analysis, it is carried out by employing 112500 elements of 

8-node brick type.
It can be observed that the results of the present penalty-based FE are

in excellent agreement with reference solutions. Although the warping 
function was computed by enforcing the Saint-Venant’s assumption (γ ¼
dθx=dx), it is seen from Fig. 9 that the continuity requirements of 
transverse shear stress at the interface between skin and core layers is 
satisfied. For more investigation of this issue, the variations of the un
known parameters dθx=dx and γ along the length of the sandwich beam 
are depicted in Fig. 11. It is seen from this figure that dθx=dxand γ 
approach each other, except the region near clamped support. Thus, one 
can conclude that the simplifying assumption γ ¼ dθx=dx used for 
obtaining the warping function (Section 3) is rational and acceptable. 

Contour plot of in-plane normal displacement U at free end of 
sandwich beam (i.e. x ¼ L) is shown in Fig. 12. In this figure, the contour 
plot of 3D finite element model is also given for the comparison pur
poses. Two sets of results are in very good agreement quantitatively and 
qualitatively. It can be noted from Fig. 12 that in-plane normal 
displacement U varies anti-symmetrically about both width and thick
ness of beam. The maximum value of U occurs along the edges of width 
at interface between core and skin layers. The maximum value of in- 
plane normal displacement predicted by ABAQUS is 0.128 mm. For 
the present penalty-based finite element model, this value is 0.129 mm. 

5.4. Bending-torsion of a four-layer composite beam 

As a final example, a four layered composite beam with lamination 
scheme [0/90/90/0] is considered. Boundary and loading conditions of 
beam is shown in Fig. 13. The geometrical parameters considered for 
this example are given as L ¼ 2 m, b ¼ 0.4 m and h ¼ 0.1 m. All layers 
have the same thickness. The material properties are assumed as follows 
(El Fatmi and Zenzri, 2002): 

E1¼ 137:6 GPa; E2 ¼ E2 ¼ 14:448 GPa; G ¼ 5:848 GPa; v ¼ 0:21 

For analysis by the proposed penalty-based finite element approach, 
the beam was divided into 40 equal sized multifiber elements. Con
cerning the cross-sectional meshing, the width and thickness of each 
layer were divided into 20 and 10 segments, respectively. 

Contour plots of in-plane shear stress σxy and transverse shear stress 
σxz at a section with distance L/4 from the clamped support are shown in 
Figs. 14 and 15, respectively. In these figures, the results of present 
multifiber finite element model are compared with the results obtained 
from 3D finite element simulation (ABAQUS). It can be observed from 
Figs. 14–15 that a remarkable overall quantitative and qualitative 

Fig. 8. Contour plot of warping function (m2) for the three-part composite 
cross-section: (a) present, (b) Stoykov et al. (Stoykov et al., 2015). 

Table 5 
Convergence test on θ (rad) and γ (rad/m) with increasing the number of axial and cross-sectional elements.  

ne 5 10 20 40 

me θ� 102 γ� 102 θ� 102 γ� 102 θ� 102 γ� 102 θ� 102 γ� 102

3 3.468 3.905 3.701 3.906 3.759 3.906 3.766 3.906 
60 3.467 3.902 3.700 3.903 3.758 3.903 3.764 3.903 
180 3.465 3.895 3.698 3.895 3.756 3.895 3.762 3.895 
300 3.462 3.889 3.695 3.890 3.755 3.890 3.760 3.890 
600 3.462 3.889 3.695 3.890 3.755 3.890 3.760 3.890  

Table 6 
Convergence test on the number of required cross-sectional elements for the 
evaluation of shear stresses (MPa) and in-plane normal displacement (mm).  

me τxyð1m;0; � 0:05Þ τxzð1m;0:2; � 0:045Þ Uð1m;0:2;0:04Þ

60 2.354 0.195 0.129 
180 2.365 0.351 0.129 
300 2.375 0.387 0.129 
600 2.396 0.398 0.129 
900 2.398 0.400 0.129 
1200 2.398 0.400 0.129  
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agreement exists between the two sets of results. Note that 3D finite 
element simulation is carried out by employing 30� 40� 50 elements 
of 8-node brick type. The number of degrees of freedom in the ABAQUS 
model is 194,463 while this value for the present multifiber finite 
element model is 3179. 

It can be observed from Fig. 14 that the in-plane shear stress σxy 
varies symmetrically about width while its distribution along the 
thickness is anti-symmetric. Similar to the 3D finite element solution, 
the in-plane shear stress computed by the present penalty-based multi
fiber finite element model satisfies the zero stress conditions at the edges 
of the width. In both present and 3D finite element models, maximum in- 
plane shear stresses occur at the middle of the upper and lower surfaces. 
The predicted value of ABAQUS simulation for the maximum shear 
stress τxy at the considered section is 2.01 MPa. This value for the present 
multifiber model is 2.06 MPa (error is about 2.5%). 

Fig. 15 shows that the distribution of transverse shear stress along 
the thickness direction is symmetric. Through-the-thickness variations 
of σxz at two different sections are depicted in Fig. 16. It can be observed 
that the predicted transverse shear stress σxz maintains its continuity 
along the thickness and fulfills the stress-free requirement on the upper 
and lower surfaces of the laminate. Due to the simultaneous effects of 

bending and torsion actions, the transverse shear stress distribution does 
not vary anti-symmetrically along width. In case of pure torsion, dis
tributions of transverse shear stress about width are anti-symmetrical. In 
both present and 3D finite element models, maximum of transverse 
stresses occur at the edges of the width. The maximum value of shear 
stress σxz predicted by ABAQUS is 2.11 MPa while that value is 2.00 MPa 
for the present model. Note that the bending contribution of transverse 
shear stress σxz is calculated directly from the constitutive equations. 
Although the calculation of bending shear stress by integrating the 
equilibrium equations leads to more accurate results, the direct esti
mation of the stresses from the constitutive equations is preferred for 

Fig. 9. Distributions of transverse shear stress σxz: (a) along the thickness di
rection (x ¼ 1000 mm, y ¼ 200 mm), (b) along the width direction (x ¼ 1000 
mm, z ¼ � 40 mm). 

Fig. 10. Distributions of in-plane shear stress σxy along the width direction at 
interface: (a) core (x ¼ 1000 mm, z ¼ � 40 mm), (b) skin (x ¼ 1000 mm, z ¼
� 40 mm). 

Fig. 11. Variations of dθ/dx and γ along the length of sandwich beam.  
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materially nonlinear analysis cases. 
In Fig. 17, contour plot of in-plane normal stress σxx at clamped 

support (x ¼ 0) is shown and compared with 3D finite element results. 
Two sets of results are in a quite reasonable agreement, as it can be 
clearly observed in Fig. 17. The in-plane normal stress varies anti- 
symmetrically about the thickness and its maximum value in both pre
sent and 3D finite element models occurs at the right-hand-side corners 
of the cross-section. ABAQUS predicts the maximum value of in-plane 
normal stress as 50.72 MPa. The present penalty-based finite element 
model gives 53.58 MPa. 

Longitudinal variations of stress components σxx, σxy and σxz are 
depicted in Fig. 18. Variations of displacement components U, V and W 
along the length of the cantilever beam are also presented in Fig. 19. The 
results obtained from ABAQUS simulation are shown in these figures for 
the comparison. The present multifiber finite element results are again 
in a very good agreement with the results of ABAQUS. However, the 
computational cost of present finite element model is much lower than 
ABAQUS model. 

These numerical results prove the efficiency and accuracy of the 
proposed penalty-based finite element formulation for the coupled 
bending and torsional-warping analysis of laminated composite and 
sandwich beams. 

6. Conclusions

For the first time, an efficient and accurate penalty-based multifiber
finite element model was developed for coupled bending and torsional- 
warping analysis of laminated composite and sandwich beams. 
Displacement fields of composite beams were obtained by the 

Fig. 12. Contour plot of in-plane normal displacement U (mm) at (x ¼ 1 m, y, 
z): (a) ABAQUS, (b) present. 

Fig. 13. Boundary and loading conditions of composite laminated beam of 
example 4. 

Fig. 14. Contour plot of in-plane shear stress σxy (MPa) at (L/4,y,z): (a) ABA
QUS, (b) present. 

Fig. 15. Contour plot of transverse shear stress σxz (MPa) at (L/4,y,z): (a) 
ABAQUS, (b) present. 
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superimposition of displacement fields of composite beam due to axial 
extension, bending and torsion. For representing the displacement field 
of composite beam in pure bending, refined sinus shear deformation 
beam theory was used. Concerning the displacement field associated to 
torsion, restrained warping-torsion theory of Vlasov was employed. 

A four-node full-compatible Hermitian element was employed to 
compute the warping function from the elliptic partial differential 
equation. To enforce the torsional-warping contribution of in-plane 
normal displacement and transverse shear stress at the layer in
terfaces, the penalty function approach was used. A three-node 1D 
multifiber finite element model was derived for approximation of un
known variables of displacement field. Finally, discrete form of gov
erning equations were derived from the principle of minimum potential 
energy. Shear correction factor is not needed in the present formulation 
and traction-free conditions of shear stress components on exterior 
edges of beam is guaranteed. Moreover, the continuity conditions of 
transverse shear component of stress tensor as well as all displacement 
components are fulfilled at the interface between adjacent layers. 
Various examples of composite beams under combined transverse and 
torsional loads were analyzed to assess the present multifiber finite 
element model. Numerical results were compared with 3D finite element 
solutions, analytical and numerical results reported by other re
searchers. It was observed that the results of present model are in very 
good agreements with other reference solutions. Indeed, it was proved 

that the present formulation can predict the quasi-3D responses of 
composite beams by using a relatively small number of degrees of 
freedom. The ratio of number of dofs of present model to the 3D finite 
element model is about 1/60. 

Future researches are toward the micromechanics-based progressive 
failure analysis of laminated composite beams by using the present 
multifiber finite element method. 
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Fig. 16. Through-the-thickness variations of σxz at two different sections.  

Fig. 17. Contour plot of in-plane normal stress σxx at (L/4,y,z): (a) ABAQUS, 
(b) present.

Fig. 18. Variations of stress components along the length of the cantilever 
beam: (a) σxx (x,y ¼ 200 mm, z ¼ 50 mm), (b) σxy (x,y ¼ 0, z ¼ 50 mm), (c) σxx 

(x,y ¼ 200 mm, z ¼ 0). 
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Appendix A 

The arrays of matrix Kφ can be obtained from the following relations: 

Kϕ
� kþ1

i
nbϕ ;

kþ1
i

nbϕ
�
¼ pϕ

Kϕ
� kþ1

i
nbϕ ;

k
j
nbϕ
�
¼ � pϕ

Kϕ
� k

j
nbϕ ;

kþ1
i

nbϕ
�
¼ � pϕ

Kϕ
� k

j
nbϕ ;

k
j
nbϕ
�
¼ pϕ

ðk ¼ 1; 2; …․; NC � 1Þ
ði; j ¼ 1; 2; …::; nzkþ1 Þ

(A.1)  

Fig. 19. Longitudinal variations of displacement components: (a) U(x,y ¼ 0,z 
¼ h/2), (b) V(x,y ¼ 0,z ¼ h/2), (c) W(x,y ¼ 0,z ¼ h/2). 
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where kþ1
i nbφ and kj nbφ are the number of row in bΦ which correspond to bφkþ1

i and bφk
j , respectively. The arrays of matrix Kφ;y can be obtained as below: 

Kϕ;y

�
kþ1
i

nbϕ ;y
; kþ1

i
nbϕ ;y

�
¼ pϕ;y

Kϕ;y

�
kþ1
i

nbϕ ;y
; k

j
nbϕ ;y

�
¼ � pϕ;y

Kϕ;y

�
k
j
nbϕ ;y

; kþ1
i

nbϕ ;y

�
¼ � pϕ;y

Kϕ;y

�
k
j
nbϕ ;y

; k
j
nbϕ ;y

�
¼ pϕ;y

ðk ¼ 1; 2; ::::; NC � 1Þ
ði; j ¼ 1; 2; ::…; nzkþ1 Þ

(A.2)  

where kþ1
i nbφ ;y 

and kj nbφ ;y 
are the number of row in bΦ which are corresponding to bφkþ1

i;y and bφk
j;y, respectively. The arrays of matrix Kφ;y are given by: 

Kϕ;z

� kþ1
i

nbϕ ;z
; kþ1

i
nbϕ ;z

�
¼ pϕ;z

�
Ckþ1

55

�2

Kϕ;z

� kþ1
i

nbϕ ;z
; k

j
nbϕ ;z

�
¼ � pϕ;z C

k
55Ckþ1

55

Kϕ;z

� k
j
nbϕ ;z

; kþ1
i

nbϕ ;z

�
¼ � pϕ;z C

k
55Ckþ1

55

Kϕ;z

� k
j
nbϕ ;z

; k
j
nbϕ ;z

�
¼ pϕ;z

�
Ck

55

�2

ðk ¼ 1; 2; ::::; NC � 1Þ
ði; j ¼ 1; 2; …::; nzkþ1 Þ

(A.3)  

where kþ1
i nbφ ;z 

and kj nbφ ;z 
are the number of row in bΦ which are corresponding to bφkþ1

i;z and bφk
j;z, respectively. The arrays of Qφ;z , which is a vector with 

size n� 1, are obtained from the following relations: 

Qϕ;z

� kþ1
i

nbϕ ;z
; 1
�
¼ pϕ;z C

kþ1
55

�
Ck

55 � Ckþ1
55

�
yi

Qϕ;z

� k
j
nbϕ ;z

; 1
�
¼ pϕ;z C

k
55

�
Ck

55 � Ckþ1
55

�
yi

ðk ¼ 1; 2; ::; NC � 1Þ
ði; j ¼ 1; 2; …::; nzkþ1 Þ

(A.4) 

Based on numerical experience, the value of penalty parameters pφ, pφ;y and pφ;z were assumed 104 times of the largest absolute value of entry of 
matrix K. 

Appendix B 

The vectors of degrees of freedom of the fiber elements are defined as: 

bue
u¼fbu1 bu2g

T (B.1)  

bue
w¼

�
bw1 bw1;x bw2 bw2;x

�T (B.2)  

bue
v¼
�
bv1 bv1;x bv2 bv2;x

�T (B.3)  

bue
θy
¼
�
bθy1 bθy3 bθy2

�T (B.4)  

bue
θz
¼fbθz1 bθz3 bθz2g

T (B.5)  

bue
uloc
¼
�
buloc

1 bu
loc

3 buloc
2

�T (B.6)  

bue
θx
¼fbθx1 bθx2g

T (B.7)  

bue
u¼fbγ1 bγ2g

T (B.8) 

Interpolating matrices NLL, NH and NQL are defined as: 

NLL¼fð1 � rÞ=2 ð1þ rÞ=2gT (B.9)  

NH¼fH01ðrÞ H11ðrÞ H02ðrÞ H12ðrÞgT (B.10)  

NQL¼frðr � 1Þ=2 ð1 � rÞð1þ rÞ rð1þ rÞ=2gT (B.11)  
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