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1. Introduction

Composite steel-concrete beams and decks are widely used in the
construction of modern buildings, bridges and other civil engineering
infrastructures. The optimal design of such structures requires accurate
and realistic analysis tools. However, the accurate prediction of the
structural behavior of composite beams and decks is a complicated
procedure in some extent. In these types of structures, the concrete slab
is usually connected to steel joists by steel shear connectors. Due to the
flexibility of the shear connectors, the slips occur at the interface be-
tween the concrete slab and steel joists. This phenomenon which is also
known as partial shear interaction [1] must be considered in the
structural modeling for a realistic analysis. In the practical applications,
twin-girder decks and steel-concrete beams are made of concrete slabs
which are more than 20m wide. In addition to partial shear interaction,
the occurrence of significant warping in the concrete slab cross-section
leads to axial stress concentration in the slab areas near the steel joists.
This phenomenon which is known as shear lag effect cannot be ne-
glected in the analysis of these structures. The above two aforemen-
tioned phenomena may be caught only with a 3D finite element (FE)
analysis. However, the computational cost of the modeling of composite
beams and decks with solid finite elements is very high and this type of

analysis must be carried out by expert designers.
These limitations encouraged researchers to develop advanced one-

dimensional (1D) finite elements for the analysis of composite steel-
concrete beams and decks. In the early developed 1D elements, the
partial shear interaction effects were usually neglected but the shear lag
effects was taken into account for design purposes using the concept of
effective slab width [2]. Based on the Newmark's kinematic model, Sun
[2] introduced a displacement based beam element for the accurate
simulation of steel-concrete composite beams with shear lag and partial
shear interaction. In this work, the effects of transverse shear strains in
concrete slabs and steel beams are neglected. Sun and Bursi [3] for-
mulated three displacement-based finite elements and two mixed
(force-displacement based) elements for the static analysis of steel-
concrete composite beams with partial shear interaction. They con-
sidered the effects of shear lag phenomenon by introducing a parabolic
shear warping function in the kinematics of the slab cross-section.
Based on Euler–Bernoulli's theory (EBT), a beam element with 13 dof
was presented by Dezi et al. [5] for the analysis of steel-concrete twin-
girder decks. By introducing a known warping function, Dezi et al. took
into account the effects of slab shear lag. These researchers in [6] also
extended their finite element formulation for the time-dependent ana-
lysis of twin girder steel-concrete composite decks. Luo et al. [7]
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Emphasis in this study is placed on the shear lag and interfacial slip
effects, rather than on detailed nonlinear constitutive laws of concrete
and steel.
Firstly, a three-nodded beam element with 25 dofs is developed

based on the kinematics proposed for the concrete slab and steel joists.
In the next step, steel-concrete composite beams and twin-girder decks
with different loading and boundary conditions are analyzed using a
MATLAB code whose algorithm is based on the present formulation.
Finally, the results obtained from the present finite element model are
compared with the elasticity solutions, the results of 3D FE analysis and
other similar 1D FE models available in the open literature.

2. Problem formulation

The typical cross-section of steel-concrete composite beams and
twin girder decks are depicted in Fig. 1. As shown in Fig. 1, these
structures are made of the concrete slab, steel joists and shear con-
nectors. The chosen Coordinate systems for each constituent element
are also shown in these figures. Note that the coordinate systems are

Fig. 1. Typical geometry of composite structures: (a) steel-concrete beam cross-
section, (b) twin-girder deck cross-section, (c) side view of a portion of the
composite structure.

introduced a 1D finite segment beam model for the calculation of shear 
lag effects in the thin-walled box girders with varying depth. By solving 
the governing differential e quations, t hey o btained m ultiple long-
itudinal displacement functions for each segment of the box girder. 
Based on the Generalised Beam Theory (GBT), Henriques et al. [8] in-
troduced an accurate finite e lement model f or n onlinear a nalysis of 
wide-flange steel and steel-concrete composite beams considering the 
shear lag effects. GBT c an p redict t he i n-plane a nd o ut-of-plane de-
formations of the cross-section by introducing “cross-section deforma-
tion modes”.
By taking a third order variation of the axial displacement along the 

beam depth, Uddin et al. [9] proposed an efficient 1D  be am finite 
element model for inelastic analysis of composite beams with partial 
shear interaction. Based on the third order shear deformation beam 
theory, Chakrabarti et al. [10] presented a finite element model for the 
analysis of steel-concrete composite beams. The model of these re-
searchers takes into account the partial shear interaction effects as well 
as the transverse shear strains induced in the steel beam and concrete 
slab. In the framework of EBT and Timoshenko's beam theory (TBT), 
Zona and Ranzi [11] introduced three different 1 D fi nite element 
models for the nonlinear analysis of steel-concrete composite members 
with beam-slab interface slip. A family of zero-thickness interface ele-
ments was introduced by Silva and Sousa [12] for the accurate analysis 
of steel-concrete composite beams with partial shear interaction. The 
proposed finite element formulation of these researchers is based on the 
assumption of the classical beam theories (EBT and TBT). Dall’Asta and 
Zona [13] investigated the locking problems which usually occur in the 
finite e lement a nalysis o f c omposite b eams w ith i nterlayer s lip, or 
partial shear interaction. Through calibrated choice of the displacement 
shape functions, they proposed a strategy for avoiding locking in dis-
placement-based elements. These researchers also compared the effi-
ciency of the displacement-based and mixed finite e lements models 
with each other. Ranzi et al. [14] analyzed the composite beams with 
partial shear interaction using different structural analysis approaches 
(the finite e lement method, t he d irect s tiffness model, th e fin ite dif-
ference method and the exact analytical method). They found that the 
exact analytical method and the direct stiffness a pproach l ead to 
identical results. Based on the assumption of GBT, Taig et al. [15] in-
troduced a 1D finite element model for investigation of the partial shear 
interaction phenomenon in steel–concrete composite beams.
For the realistic and accurate analysis of composite steel-concrete 

beams and decks, three kinematic aspects should be considered: effects 
of transverse shear strains in the concrete slab and steel joists, shear lag 
phenomenon and beam-slab interface slip. The review of open literature 
shows that the formulation available for the analysis of composite 
beams/decks involves only one or two of the above kinematic aspects. 
To fill this gap, a new advanced 1D kinematic and finite element model 
is developed in this study for static analysis of composite beams/decks. 
The proposed model takes into account the effects o f s hear l ag and 
partial shear interaction. It also considers the effects of transverse shear 
strains induced in the concrete slab and steel beams which have an 
important role in the response of composite beams/decks particularly 
for those with deep depth. The present model is based on a Sinus de-
formation theory which satisfies the zero transverse shear stress con-
ditions on the top and bottom surfaces of the composite beams/decks. 
For capturing the shear lag effects, t he product o f a  known warping 
shape function at a unknown measuring intensity function is introduced 
in the slab cross-section kinematic. The slab-beam slip is modeled based 
on the concept of spring layer model. It is worth to note that the ori-
ginal Sinus model kinematics was first t ime i ntroduced by Polit and 
Touratier [16] for the analysis of laminated composite plates. The Sinus 
shear deformation theory was enriched in Vidal and Polit [17] by in-
troducing a layer refinement in the kinematics, and then extended to 
thermal (Vidal and Polit [18]) and piezoelectric (Lezgy-Nazargah et al.
[19–21]) effects. In the present study, these last works are extended to 
static analysis of composite steel-concrete beams and twin-girder decks.
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where u c0 is the axial displacement at the reference plane of the con-
crete slab, x( )c denotes the shear-bending rotation of concrete slab
around the y axis and =g z h z h( ) ( / )sin( / )c c c c . w is the vertical
(transverse) displacement which is taken to be same for both the con-
crete slab and steel beams. y( ) is known warping shape function of
concrete slab while u x z( , )lag c is the corresponding warping intensity
function. Expressions for u x z( , )lag c and y( ) are given in Section 2-2. In
most of existing studies [3–5] that the effect of shear lag has been
considered in the formulation, the intensity of warping shape function
is assumed to be constant on the slab thickness (i.e.
u x z u x( , ) ( )lag c lag ). However, this simplifying assumption is valid only
for steel-concrete composite beams with small thickness of the slab.
Concerning the steel beams, they are assumed as equivalent rec-

tangular layered composite structures [22–24] and the following rela-
tions are considered for their displacement fields:
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where =f z h z h( ) ( / )sin( / )s s s s , u s0 and x( )s denote the axial dis-
placement and the shear-bending rotation at the reference plane of steel
joists, respectively.

2.2. Warping shape and intensity functions

For describing the non-uniform distribution of axial stress in the
concrete slab, warping and intensity shape functions are introduced in
this section.
The global equilibrium equations at any point of the concrete slab

should also be satisfied:
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where xx , xy and xz are components of Cauchy stress tensor. By as-
suming, at a first level of approximation, a uniform distribution of axial
displacement on the slab width, the following expressions are obtained
for stress components of concrete slab:
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where Ec and Gc denote modulus of elasticity and shear modulus of the
concrete material, respectively. Note that Eqs. (4) and (5) are obtained
based on the usual displacement-strain and stress-strain relations. It is
seen from Eq. (5) that the transverse shear stress has a cosine variation
over the slab thickness which becomes zero at the top surface of slab. It
also becomes zero at the bottom surface of slab which is not true for the
portion connected with the steel joists. However, this point should be
considered here that the distributed shear springs, used for modeling
the interfacial slip phenomenon, enforce the continuity conditions of
transverse shear stress at the interface between the concrete slab and
steel joists (see Section 2.3). Substituting the Eqs. (4) and (5) into Eq.
(3) and renaming the unknown parameters gives:
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Integrating of Eq. (6) by taking into account the boundary condi-
tions of xy give the following expressions for the in-plane shear stress at
the concrete slab:

Based on the usual displacement-strain and stress-strain relations,
one can write:
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Integrating Eq. (8) with respect to y by taking into account Eq. (7)
lead to the following expression for the axial displacement of the con-
crete slab:
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is warping functions and J x z( , )c is an unknown function. In the general
case (twin-girder composite decks), the warping functions obtained for
the slab cross-section are constituted by three parabolic branches. In the
case in which =B 01 (i.e. steel-concrete composite beams), the warping
functions have only two parabolic branches. Distribution of the warping
function y( ) along the width of the concrete slab is shown in Fig. 2.
By comparing the right side of Eq. (1.a) and Eq. (9), it can be
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chosen so that the coordinate plane x-z lies on the cross section sym-
metry plane of composite beam/deck.

2.1. Kinematics

In this study, the following relations are considered for the axial and 
vertical displacement components of the concrete slab:
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Although the above expressions for y( ) and u x z( , )lag c were ob-
tained by assuming a uniform distribution of axial displacement on the
slab width, numerical experiences show that these expressions have
enough accuracy for capturing shear lag phenomenon in the composite
beams. For achieving more accurate expressions, the above process for
derivation of y( ) and u x z( , )lag c should be repeated again with con-
sidering the last term of Eq. (1.a); i.e. y u x z( ) ( , )lag c . The later process
leads to the complicated algebraic expressions for y( ) and u x z( , )lag c
without significant improvement of accuracy.

2.3. Slip model

The partial shear interaction effects are taken into account using
distributed shear springs which connect the concrete slab and steel
joists at their interface. The stiffness of these distributed elastic springs
can be approximated based on the tangential stiffness of the shear
connectors which connect two layers to each other. Thus, the slip which
occurs at the interface between concrete slab and steel beams can be
obtained from the following relation:
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2.4. Expression of the strain

Eq. (1) can be written in the following matrix form:

=u A uc c u (13)
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The Green's strain vector in the concrete slab may be written as:
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Similarly, Eq. (2) can be rewritten in the following matrix form:
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Thus, the strain vector in the steel beams can be expressed as:
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2.5. Constitutive equations

The stress-strain relation at any point of the concrete slab can be
written as:
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or = Dc c c.
As hinted in Section 2.1, the steel joists are assumed as rectangular

layered composite structures. In the framework of the equivalent
layered section [22–24], the original cross-section of a thin-walled steel
member is replaced with a unit width rectangular layered cross-section
one. The stress-strain relations for the kth layer of the steel beam can be
expressed as:
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or = Ds
k

s
k

s
k( ) ( ) ( ). In the above equation, Ēs

k( ) denotes the modified
modulus of elasticity of the kth layer of the equivalent cross-section of
steel beam. s is Poisson's ratio of the steel material. Due to this fact that
the steel joist have small width, the in-plane component of the shear
strain ( xy) is disregarded in Eq. (18). On the other hand, concrete slabs
have in some practical applications more than 20m wide. Thus, the
effects of the in-plane shear strain xy should be considered in the
analysis (see Eq. (17)).

Fig. 2. Slab warping function: (a) twin-girder composite decks, (b) steel-con-
crete composite beams.
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where P̄s, P̄c, P̄s
V and P̄c

V denote the steel surface force vector, concrete
surface force vector, steel body force vector, and steel body force
vector, respectively. Vs, Vc are steel joist volume and concrete slab vo-
lume, respectively. L is the total length of the composite beam/deck
while kw denotes the stiffness of the distributed shear springs.

3.2. Approximation of the boundary value problem

A 1D beam element is employed for solving the governing differ-
ential equations of the present formulation. To this aim, the unknown
parameters u x( )os , w x( ), x( )s , u x( )oc , x( )c , u x( )lag1 , u x( )lag2 and u x( )lag3
are interpolated in terms of their nodal variables. C1-continous
Hermitian shape functions are employed for the interpolation of the
transverse displacement w x( ). The quadratic Lagrange shape functions
are used for the interpolation of x( )s and x( )c . Although linear
Lagrange shape functions are enough for the interpolation of rotation in
slab and steel beams, the identical order of approximation in dw x dx( )/
and x( )i ( =i s c, ) is prevented as the field compatibility conditions in
the relevant transverse shear strain components of the concrete slab and
steel beam are ensured [17–20]. u x( )os , u x( )oc , u x( )lag1 , u x( )lag2 and
u x( )lag3 are also approximated by quadratic Lagrange shape functions.
The employed three-node element as well as its nodal variables are
shown in Fig. 3.
In the domain of each element, the vector of unknown parameters

uu can be expressed in terms of the nodal variables as follow:
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and N̄, N and N are the interpolation matrices. Substituting Eq. (20)
into Eqs. (13) and (15) gives:
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Similarly, the steel and concrete strain vectors as well as the

expression obtained for slip may be written in terms of nodal variables:
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Inserting Eqs. (21)–(25) into Eq. (19) gives the total potential en-
ergy of the composite beam/deck beam in terms of the nodal variables.
Minimizing the total potential energy results:

=Ku Pˆ (26)

where is the total stiffness matrix, û is the total unknown nodal vector,
and P is the total load vector. The aforementioned matrices can be
defined as follows:
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The element steel joists stiffness matrix Ks
e, the element concrete

slab stiffness matrix Kc
e, the element distributed shear spring stiffness

matrix Kspring
e , the element steel joists force vector Fs

e, and the element
concrete slab force vector Fc

e are defined, respectively, as below:
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In the region under hogging moment, the concrete slabs/decks are
subjected to cracking. In order to consider the concrete crack of slabs/
decks, the stiffness matrix of composite beam (Ke) in the hogging re-
gions should be calculated by neglecting the element stiffness matrix of
concrete slab (i.e. Kc

e).

4. Numerical results

In this section some numerical examples are presented to assess the
efficiency of the proposed 1D finite element model for the static ana-
lysis of steel-concrete composite beams and twin-girder decks. The re-
sults obtained from the present finite element model are compared with
the results of 3D finite element modeling (ABAQUS), exact elasticity
solutions as well as the results of advanced 1D finite element models
available in open literature.

4.1. Simply supported steel-concrete composite under uniformly distributed
load

In this example, a simply supported steel-concrete composite beam
with length L=20m under a uniformly distributed load of 35 kN/m is
analyzed using the present finite element model. The geometrical
parameters of the cross-section as well as the material properties of the
concrete and steel are shown in Fig. 4.
First, a convergence study with respect to the number of elements

was carried out. The maximum shear stress, maximum deflection and
maximum slip of the composite beam for the non-dimensional inter-
facial spring stiffness parameter αL=0.1 are presented in Table 1. The
definition of the non-dimensional interfacial stiffness αL is as below
[13,14]:
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+

L L k
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h h
E I E I

1 1
4( )w

c c s s

c s
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2 2

(33)Fig. 3. three-nodded beam element and its nodal variables.

3. Finite element formulation

3.1. Weak formulation of the boundary value problem

The total potential energy of the composite beam/deck can be 
written as:



where Ac and As denotes the cross-sectional area of the concrete slab
and steel joist, respectively. Ic and Is are the moment of inertia of the
concrete slab and steel joist, respectively. It can be seen from Table 1
that the convergence velocity of the present finite element model is
high and a mesh with 20 elements is enough for a static bending test.
It is worth to note that the considered beam of the present example

has been previously studied by Chakrabarti et al. [10] using a family of
finite element models which are based on TBT and high-order beam
theory (HBT). In Table 2, the results of the present finite element model
for different values of the non-dimensional interfacial stiffness αL are
compared with those obtained by Chakrabarti et al. [10]. The results of
all these different FE models are obtained using 20 beam elements of
the same length. The number of dof of the present model, TBT and HBT
are 329, 205 and 328, respectively. It can be seen from the Table 1 that
the results of the present finite element model are in good agreement
with the HBT of Chakrabarti et al. [10]. The computational cost of the
present model is almost similar to HBT. However, the present finite
element model, in contrast to HBT of Chakrabarti et al. [10], is able to
take into accounts the effects of shear lag. The numerical results of
Table 2 reveal this fact that with increasing of the non-dimensional
interfacial stiffness αL, the values of the maximum deflection and in-
duced transverse shear stress of the composite beam reduces sig-
nificantly.

4.2. Simply supported steel-concrete composite beam under sinusoidal load

A simply supported steel-concrete composite beam subjected to a
sinusoidal load with the amplitude of 15 kN/m is analyzed using the
proposed finite element. The cross-section dimensions are depicted in
Fig. 5. The considered beam has length L=6m and the shear stiffness
of its shear connectors is assumed to be kw. The considered values for

the modulus of elasticity and Poisson's ratio are Ec=8.5 GPa and
vc=0.2 for concrete, and Es=210GPa and vs=0.3 for steel. Based on
the convergence mesh study, it found that a mesh with 20 elements
gives converged results for both displacements and stresses. Variations
of the transverse shear stress of the composite beam along the thickness
direction are shown in Fig. 6 for three different values of the shear
stiffness of shear connectors (kw = 40, 400, 4000MPa). In this figure,
the present finite element results are compared with the 2D exact
elasticity solution of Xu and Wu [25]. It is seen that the present nu-
merical results are in excellent agreement with elasticity solutions. It
can be also observed from Fig. 6 that the present formulation ensures
the zero boundary conditions of the transverse shear stress on the upper
and lower surfaces of the composite beam. Fig. 6 also shows that with
an increasing of the stiffness of the shear connectors, the transverse
shear stress of the composite beam increases at the partially connected
interface while it decreases at the web of steel joist.
Variations of the maximum deflection of the composite beam

against different stiffness of shear connectors are depicted in Fig. 7. It is
seen that the value of kw has a significant effect on the flexural stiffness
of the steel-concrete composite beams and it should be considered in
practical design purposes.

4.3. Simply supported twin-girder composite deck

In this section, a simply supported twin-girder composite deck with
span length L=8m is analyzed using the present finite element model.
Uniformly distributed loads of 1 kN/m acting in the plane of steel webs
are applied vertically to the considered composite deck. Cross-section
dimensions and material properties of the beam are shown in Fig. 8.
Distributions of the mid-span axial stress xx at the concrete slab mid-
height are shown in Fig. 9. Axial stress ( xx) and in-plane shear stress
( xy) contours at the concrete slab mid-height on a quarter of the twin-
girder deck are shown in Fig. 10. It can be seen from these figures that
the distributions of the in-plane stress xx is not constant along the slab
width as a consequence of the shear lag effects. In Figs. 9 and 10, the
results obtained from the present finite element model are compared
with the results of GBT [8]. It is worthy to note that the cross-section
kinematic description in the GBT model is based on the superposition of
so-called “cross-section deformation modes”, whose amplitudes along
the member axis are unknowns. GBT approach can effectively predicts
the in-plane and out-of-plane cross-section deformations of thin-walled
beams. It can be seen that the present finite element model results are in

Fig. 4. Geometry of the cross-section and the elastic characteristics of the
materials (all dimensions in mm).

Table 1
Results of the mesh convergence study (αL=0.1).

Number of
elements

Dof number Maximum
deflection (mm)

Maximum slip
(mm)

Maximum shear
stress (MPa)

5 89 21.10 2.3287 17.67
10 169 21.10 2.3286 18.62
20 329 21.10 2.3286 19.01
40 649 21.10 2.3286 19.12

Table 2
Maximum slip, deflection, and shear stress of simply supported steel-concrete composite beam for different values of interfacial stiffness.

αL Maximum deflection (mm) Maximum slip (mm) Maximum shear stress (MPa)

Present TBT [10] HBT [10] present TBT [10] HBT [10] present TBT [10] HBT [10]

0.1 21.10 22.50 23.03 2.3286 2.533 2.550 19.01 7.01 22.7
1 20.19 21.48 22.08 2.1330 2.318 2.334 18.85 6.98 22.5
5 13.61 14.20 14.65 0.7143 0.7705 0.7771 17.94 6.70 21.2
10 11.46 11.85 12.27 0.2404 0.2580 0.2611 17.81 6.59 20.7
20 10.72 11.04 11.45 0.0685 0.0732 0.0745 17.82 6.54 20.5
50 10.50 10.79 11.21 0.0119 0.0126 0.0130 17.87 6.50 20.3

Fig. 5. The cross-section dimensions of the steel-concrete composite beam of
example 2 (all dimensions in mm).



good agreement with GBT results.

4.4. Two-span twin-girder composite deck

In this example, a realistic two-span twin-girder composite deck is
analyzed using the proposed finite element model. The material prop-
erties, geometrical parameters, boundary and loading conditions of the
composite deck are shown in Fig. 11. For analyzing this deck using the
present finite element model, first the sensitivity of the numerical re-
sults with respect to the number of elements was carried out. Due to the
symmetry, only a half of composite deck was modeled. It was found that
the discretization of the deck into 40 equal sized beam elements yields
results with enough accuracy. For comparison purposes, a 3D finite
element analysis was also carried out using ABAQUS software. A mesh
with 35,800 elements is shown in Fig. 12. Eight-node brick elements
with linear elastic behavior were employed for modeling the concrete
slab and steel joists while flexible shear connectors were modeled using
appropriate contact (cohesive) elements with linear elastic traction-
separation behavior. Traction-separation laws describe the interaction
between two surfaces by defining a relative displacement at each con-
tact point. The initial stiffness of the contact elements in normal and
tangential directions are taken as =K0.01 nn = = =K K k kN mm12 /ss tt w

2.
For more details about contact elements and traction-separation beha-
vior, interested readers can refer to [26]
Distributions of axial stress xx along the width of the concrete slab at

different sections of the composite deck are shown in Fig. 13. Long-
itudinal variations of the transverse deflection and axial stress in the
bottom flange of the steel joists are depicted in Figs. 14 and 15, respec-
tively. In these figures, the present results are compared with ABAQUS
results. The comparison with 1D finite element results of Dezi et al. [5] is
also made. Note that the kinematic description of the steel joist and
concrete slab in Ref. [5] is based on the EBT. However, a known warping
function is introduced in the kinematic of concrete slab for accounting the
effects of shear lag. It can be observed from Figs. 14–15 that the results
predicted by the present finite element model are in good agreement with
ABAQUS results. Concerning Fig. 13.a, less accurate results are obtained
for the regions near the free edge of concrete slab. This is due mainly to
the presence of the transverse shear stress yz in the concrete slab which is
not considered in the present formulation. However, it is seen from
Fig. 13.a that the results of the present finite element model in the pre-
diction of the axial stress at the middle of composite deck is more accurate
than in those obtained by Dezi et al. [5]. Since the kinematical for-
mulations of Dezi et al. is based of EBT, it is not able to take into account
the effects of transverse shear stress xz in the concrete slab and steel
joists. In contrast to model of Dezi et al., the present formulation uses a
cosine function for representing the transverse shear stress in the concrete
slab and steel joists. Other reason for existence of large difference be-
tween the present results and those of Dezi et al. is the use of different
warping intensity function in formulation. In [5], the intensity of warping
shape function is assumed to be constant on the slab thickness. In the
present study, a warping intensity function with non-uniform distribution
along the thickness of concrete slab is used for representing the shear lag
phenomenon.
Through-the-thickness distributions of the transverse shear stress xz

and the axial displacement U are shown in Figs. 16–17. Distribution of
the axial displacement at the end support of the composite deck with
respect to y- coordinate is depicted in Fig. 18. Again, the agreement
between the present and ABAQUS results is good. The simplifying as-
sumptions that are used in the derivation of present finite element
model (e.g. neglecting the effects of transverse shear stress yz in the

Fig. 6. Through-the-thickness distributions of transverse shear stress at (0,0,z).

Fig. 7. Variations of the maximum deflection of composite beam with respect to
the stiffness of the shear connectors.

Fig. 8. Cross-section dimensions and material characteristic of the simply
supported twin-girder composite deck (all dimensions in mm).

Fig. 9. Distributions of the mid-span axial stress xx at the concrete slab mid-
height.



concrete slab and assuming a uniform distribution of the vertical dis-
placement on the slab width) may be some reason for appearing dis-
crepancy between the present and ABAQUS results. However, the
converged mesh of ABAQUS has 144,000 dof. This value for the present

Fig. 10. Present and GBT [8] contours at the concrete slab mid-height: (a) axial stress xx, (b) in-plane shear stress xy.

Fig. 11. Two-span twin-girder composite deck: (a) cross-section dimensions
and material properties, (b) boundary and loading conditions (all dimensions in
mm).

Fig. 12. 3D finite element model of two-span twin-girder composite deck.

Fig. 13. Distribution of axial stress at different sections of the concrete slab: (a)
at (L/2, y+B, hc/2), (b) at (L/4, y, ± hc/2).



finite element model is 649. These results prove the efficiency of the
present finite element model for the static analysis of twin-girder
composite decks.
Some useful data about the shear lag phenomenon can be found

through comparing the axial stress distribution at the concrete slab of
the present twin-girder composite beam (Fig. 9) with that obtained in
the previous example (Fig. 13). The deck width-to-span ratio in the
twin-girder composite beam of the present example (2B/L = 0.286) is
much lower than the twin-girder composite one studied in the previous
example (2B/L= 0.875). However, the axial stress concentration in the
slab areas near the steel joists of the twin-girder composite beam of the
present example is much higher than that one studied in the previous
example. This shows that the deck width-to-span ratio is not only
parameter which affects the intensity of the shear lag phenomenon in

Fig. 14. Longitudinal variations of the transverse deflection of the two-span
composite deck.

Fig. 15. Longitudinal variations of the axial stress in the bottom flange of the
steel joists.

Fig. 16. Distributions of the transverse shear stress z(0, 0, )xz along the height
of the twin-girder composite deck.

Fig. 17. Distributions of the axial displacement U z(0, 0, ) along the height of
the twin-girder composite deck.

Fig. 18. Distribution of the axial displacement at the top of the concrete slab -
end support.

Fig. 19. Data of the clamped-clamped steel-concrete composite beam (all di-
mensions in mm).

Fig. 20. Distribution of the axial stress at the top of concrete slab - end support
(L, y+B, hc/2).



composite decks. It seems that beam's end conditions as well as the steel
joist spacing (B1/B) are other parameters which are effective on the
warping of concrete slab cross-section.

4.5. Wide slab steel-concrete composite beam with fixed ends

As a final example, a wide slab steel-concrete composite beam with
fixed ends is analyzed using the proposed finite element model. The
geometrical parameters, elastic characteristics of the materials, loading
and boundary conditions are shown in Fig. 19.
The considered steel-concrete beam was analyzed using 40 equal

sized beam elements (649 dof). Distributions of the axial stress ( xx)
along the wide of the concrete slab at two different sections of the beam
are shown in Figs. 20–21. In these figures, the present results are
compared with 3D finite element (ABAQUS) results. Similar to previous
example, it is seen that the present results are in good agreement with
ABAQUS results. However, the number of degrees of freedom in the
ABAQUS model (35,400 dof) is much higher than in the present 1D
finite element model.
It can be concluded from the above numerical results that the pre-

sented finite element model is able to predict the shear lag and inter-
facial slip phenomena in composite steel-concrete beams and twin-
girder decks with enough accuracy. Indeed, the presented finite ele-
ment model is simple and efficient for a low computational cost,
compared to 3D finite element models available in commercial soft-
wares.

5. Conclusion

Based on the sinus shear deformation beam theory, a 1D finite
element model was developed for the static analysis of composite steel-
concrete beams and twin-girder decks. The proposed finite element
model incorporates shear lag phenomenon, slab-beam interfacial slips
effects and the zero boundary conditions of the transverse shear stress
on the top and bottom surfaces of the composite beam and deck without
using shear correction factors. The shear lag phenomenon is captured
through introducing appropriate warping function for the slab cross-
section while the partial shear interaction between the slab and the
steel beams is represented using the concept of spring layer model. In
order to assess the accuracy of the present formulation, the results
obtained from the present model were compared with other similar
analytical and numerical models available in the literature. Further
comparisons were also made with the results obtained from 3D finite
element models. Comparison studies show that the present 1D beam
finite element model gives quasi-3D solutions at a low computational

cost.
Future works are towards the extension of the proposed finite ele-

ment model to the free vibration and materially nonlinear problems of
the composite steel-concrete beams/decks.
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