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1. Introduction

The increasing use of composite material, in particular for curved
structures, has led to the intensive development of appropriate two-
dimensional shell theories that can accurately describe the response of
multilayered anisotropic shells. In fact, the use of three-dimensional
modelisation allows us to compute accurate local solutions, but, unfor-
tunately, it is not well suitable due to prohibitive computational costs.

Two main ways are considered to obtain shell FE: (i) the “pure shell
model” in which the displacement is associated with the local curvilin-
ear vectors, and strain and stress are deduced using differential geome-
try [1,2]; (ii) the shell-like solid approach [3] where the displacement
vector is defined in the global cartesian frame and jacobian matrix
transformation is used to express strain and stress with respect to ref-
erence frame defined on the middle surface in order to introduce the
constitutive law. In this approach, differentiation is simplified and the
curvatures are not directly calculated [4]. It is widely used in commer-
cial software for simplicity reasons. Considering anisotropic structures
where 3D phenomena occur, it is also needed to develop enriched theo-
ries. According to published research, various approaches based on the
Finite Element (FE) method for composite shells have been carried out.
In the following, most of the mentioned works refer to the pure shell

model. Thus, two families of models [5] can be identified:

• the Equivalent Single Layer (ESL) Models: It includes the most com-
mon theories, namely the classical Shell Theory (CST/Koïter) and
First Order Shear Deformation Theory (FSDT/Nagdhi). The reader
can refer to Ref. [6] for a description of the assumptions on the strain
to derive different shell models. CST leads to inaccurate results for
composites because both transverse shear and normal strains are
neglected. In this way, shallow laminated shells are modelized in
Refs. [7–9]. FSDT is the most popular model due to the possibility to
use a C0 FE, but it needs shear correction factors and transverse nor-
mal strain is always neglected, e.g. Ref. [10]. So, Higher-order Shear
Deformation Theories (HSDT) have been developed to overcome
these drawbacks. Various theories are proposed based on 7 ([11,12])
or 9 parameters [13]. Wide range of theories based on the Car-
rera’s Unified Formulation are also addressed in Ref. [14]. In the ESL
context, a simple way to improve the estimation of the mechanical
quantities consists in adding zig-zag functions (Murakami [15,16])
in the displacement to introduce the slope discontinuity at the inter-
face between two adjacent layers. It allows to describe the so-called
zig-zag effect. It has been carried out by Brank [17] with a 7 param-
eters model. See also the work of Bhaskar [18] based on a HSDT
approach.
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• the Layer-Wise Models (LWM): the expression of the displace-ments/
stresses can be written over each layer. Thus, the number of 
unknowns depends on the number of layers. A quadratic triangle 
element based on a constant shear angle is considered in Ref. [19], 
but a shear correction factor is needed. A three-dimensional shell 
element is proposed in Ref. [20]. A LW triangle FE is developed in 
Ref. [21] with a condensation technique at the pre-processing level. 
Ref. [22]. deals with a hybrid strain flat triangular FE based on the 
Hellinger-Reissner variational principle. Note that the trans-verse 
normal and shear stresses are only taken into account in Ref.
[23] where a four-node isoparametric assumed strain is considered. 

We can mention the eight-node 3D hybrid-EAS solid shell element 
based on the Hu-Washizu variational principle in Ref. [24]. See also 
the previously mentioned work [14]. 

As an alternative, refined models have been developed in order to
improve the accuracy of ESL models avoiding the additional compu-
tational cost of LW approach. Based on physical considerations and
after some algebraic transformations, the number of unknowns becomes
independent of the number of layers. We can mention the work of Yasin
[25] including 5 parameters dedicated to shallow shells. Shariyat [26]
has also developed a so-called zig-zag model including 15 parameters.
It should be also mentioned the work of Dau [2] where a C1 triangu-
lar six-node FE (Argyris-Ganev) based on the Sinus model is considered
involving 5 parameters. The approach ensures the continuity conditions
of the transverse shear stresses at the interfaces between two adjacent
layers.

For the present topics, it should be noted that the mentioned works
are based on the Finite Element method for linear elasticity problem
in mechanics and applied to laminated composites, knowing that many
other approaches (meshless, analytical, semi-analytical …) are involved
in open literature. Furthermore, the fundamental subject about the
shear and membrane locking of shell is not addressed here. So, this
above literature deals with only some aspects of the broad research
activity about composite shells. An extensive assessment of different
approaches for both various theories and/or finite element applications
can be found in Refs. [27–34].

The main goal of this work consists in assessing two new degen-
erated shell approaches to model any laminated composite structures.
For the transverse coordinate, a fourth-order z-expansion in each layer
is used as it is well suited for this type of structures [35]. The first
approach is based on the classical Layer-Wise model [5,16] where the
number of unknowns per node depends on the number of layers. The
linear problem is directly solved. The originality of this approach is
the conjunction of this classical LW model with the degenerated shell
model. The second one implies the so-called Proper Generalized Decom-
position (PGD) [36–39] as it has shown interesting features in the
reduction model framework. In particular, it has been applied for com-
posite shells in Refs. [40–43]. However, these studies are either dedi-
cated to cylindrical shell geometry or not well suited to model compos-
ite structures. The present approach is based on the separation represen-
tation where the displacements are written under the form of a sum of
products of bidimensional polynomials of (x1, x2) and unidimensional
polynomials of z. The deduced non-linear problem is solved using a
fixed point strategy in which the resolution of two linear problems is
carried out alternatively. This process yields to a 2D and a 1D prob-
lems in which the number of unknowns is smaller than the previous
Layerwise approach.

This article is organized as follows. First, the geometry of the shell-
like solid is described including the reference frames. The general prob-
lem to be solved is precised. Then, the two involved approches, namely
the LW model and PGD method, are described in the particular frame-
work of the degenerated shell model. For the latter, the particular
assumption on the displacements yields a non-linear problem solved by
a fixed point strategy. The FE discretization is also described and finally,
numerical tests are performed. The present approaches are assessed on

Fig. 1. Description of the geometry of the 8-node shell element.

different shell configurations. Deep and shallow shells, different slen-
derness ratios and stacking sequences are considered for various bound-
ary conditions. The limitations and advantages of the models are pre-
cised and comparison with reference solutions are given.

2. Description of the shell

This preliminary section is dedicated to the geometric description
of the shell-like solid and to the different reference frames that will be
used to construct the finite shell element.

2.1. Description of the geometry

Let us consider a shell  = Ω × [− e
2 ,

e
2 ] where e is the constant thick-

ness of the shell and Ω is the middle surface. The description of the
geometry of the shell is based on the Cartesian coordinates of the nodes
and on the finite element approximation over the elementary domain.
For this, an eight-node quadrilateral finite element is used. Fig. 1 illus-
trates the employed finite element approximation and shows the dif-
ferent reference frames to describe the geometry and the mechanics of
the shell-like body. These different bases are precised in Table 1. The
global coordinates of any arbitrary point in the elementary domain can
be expressed in terms of the reduced (curvilinear) coordinates 𝜉, 𝜂 and
the rectilinear normal coordinate z:

𝚽(𝜉, 𝜂, z) =
⎡⎢⎢⎢⎣
X1(𝜉, 𝜂, z)
X2(𝜉, 𝜂, z)
X3(𝜉, 𝜂, z)

⎤⎥⎥⎥⎦ =
8∑

i=1
Nqi

(𝜉, 𝜂)
⎡⎢⎢⎢⎣
X1

X2

X3

⎤⎥⎥⎥⎦
i

+ z
8∑

i=1
Nqi

(𝜉, 𝜂)
⎡⎢⎢⎢⎣
t31

t32

t33

⎤⎥⎥⎥⎦
i

(1)

where Nqi
(𝜉, 𝜂) are the classical Serendipity interpolation functions.

The thickness of the shell is described in terms of the unit vector t3 =[
t31 t32 t33

]T normal to the middle surface Ω. We prescribe t3 = a3,
i.e., the normal direction of the local curvilinear reference frame on
Ω coincides with the normal direction of the local tangent plane to Ω
(see Fig. 1). The covariant in-plane base vectors a𝛼 are usually obtained
from the map 𝚽 introduced in Eq. (1) to define the shell mid-surface Ω:



Table 1
Reference frames used for the description of the shell.

(e1, e2, e3) Direct orthonormal Cartesian basis, (G)
(X1,X2,X3) Global Cartesian coordinates, (G)
(t1, t2 , t3) Direct orthonormal local basis, plane tangent to Ω, local (L)
(x1, x2, x3 = z) Local curvilinear coordinates on Ω, local (L)
(a1,a2,a3) Reduced local basis, plane tangent to Ω, Reduced (R)
(𝜉, 𝜂) Reduced curvilinear coordinates on Ω, Reduced (R)

a𝛼 = 𝚽(𝜉, 𝜂, z),𝛼 for 𝛼 = 𝜉, 𝜂 (2)

and the normal vector t3 = a3 is finally obtained from the perpendic-
ularity condition:

t3 = a3 = a1 ∧ a2‖a1 ∧ a2‖ (3)

The construction of the local base vectors t1 and t2 follows the proce-
dure suggested by Ref. [3].

2.2. The change of bases

The displacement field vector is expressed with respect to the global
reference frame ei as

u(X1,X2,X3) =
3∑

i=1
uG

i (X1,X2,X3)ei (4)

where the superscript G indicates that the components are taken in
the global reference frame. The displacement vector u = [u1 u2 u3]T is
expressed in the local orthonormal basis (L) by

uL=
[
TLG

]
uG with

[
TLG

]
=

⎡⎢⎢⎢⎣
t11 t12 t13

t21 t22 t23

t31 t32 t33

⎤⎥⎥⎥⎦=
⎡⎢⎢⎢⎣
t1 · e1 t1 · e2 t1 · e3

t2 · e1 t2 · e2 t2 · e3

t3 · e1 t3 · e2 t3 · e3

⎤⎥⎥⎥⎦
(5)

In the same way, the following expression can be obtained:

uG =
[
TGL

]
uL with

[
TGL

]
=

[
TLG

]−1 =
[
TLG

]T =
⎡⎢⎢⎢⎣
t11 t21 t31

t12 t22 t32

t13 t23 t33

⎤⎥⎥⎥⎦
(6)

The displacement vector uR defined in the reduced local basis is con-
structed as

uR =
[
TRG

]
uG with

[
TRG

]
=

⎡⎢⎢⎢⎣
a11 a21 a31

a12 a22 a32

a13 a23 a33

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
a1 · e1 a1 · e2 a1 · e3

a2 · e1 a2 · e2 a2 · e3

a3 · e1 a3 · e2 a3 · e3

⎤⎥⎥⎥⎦
(7)

Furthermore, the inverse relation holds:

uG =
[
TGR

]
uR with

[
TGR

]
=

[
TRG

]−1 (8)

Similar relations can be established between the local orthonormal L
and reduced R reference frames by substituting G by L.

3. Reference problem description

3.1. The weak form of the boundary value problem

The shell is submitted to a surface force density t defined over a
subset 𝜕F of the boundary. We assume that a prescribed displace-
ment u = ud is imposed on ΓD = 𝜕 − 𝜕F . The mechanical problem
is based on the variational principle which is given by:

find u(M) ∈ U (space of admissible displacements) such that

a(u, 𝛿u) = b(𝛿u), ∀𝛿u ∈ 𝛿U (9)

with

a(u, 𝛿u) = ∭


𝛿𝜺LT
𝝈

L d

b(𝛿u) = ∬𝜕F

𝛿u · t d𝜕

where U is the space of admissible displacements, i.e. U =
{u ∈ (H1())3∕u = ud on ΓD}. We have also 𝛿U = {u ∈ (H1())3∕u =
0 on ΓD}.

For the present work, 𝜕F is considered as the top or bottom surface
of the shell, that is z = zF with zF = ±e∕2. For sake of clarity, the
body forces are neglected in the developments.

3.2. The constitutive relation

The stress tensor is obtained from the strain tensor using the consti-
tutive equations. All these tensors will be referred to the local basis vec-
tors associated with the middle surface of the shell. In case of laminated
shells composed of NC perfectly bonded orthotropic plies, the three-
dimensional constitutive law of the kth layer in the local orthonormal
basis is expressed by:

𝝈
L(k) = C(k)

𝜺
L(k) (10)

For convenience reasons, stresses 𝝈 and strains 𝜺 are split into three
groups:

𝝈
T
p = [𝜎11 𝜎22 𝜏12], 𝝈

T
s = [𝜏13 𝜏23], 𝝈n = 𝜎33

𝜺
T
p = [𝜀11 𝜀22 𝛾12], 𝜺

T
s = [𝛾13 𝛾23], 𝜺n = 𝜀33

(11)

where the subscripts p, n and s denote in-plane, transverse normal and
shear values, respectively.

Using the separation between the different components described
above, the three dimensional constitutive law of the kth layer is given
by:

⎧⎪⎪⎨⎪⎪⎩
𝝈
(k)
p = Q(k)

pp 𝜺
(k)
p + Q(k)

pn 𝜺
(k)
n

𝝈
(k)
n = Q(k)

np 𝜺
(k)
p + Q(k)

33𝜺
(k)
n

𝝈
(k)
s = Q(k)

s 𝜺
(k)
s

(12)

where

Q(k)
pp =

⎡⎢⎢⎢⎢⎢⎣
Q(k)

11 Q(k)
12 Q(k)

16

Q(k)
12 Q(k)

22 Q(k)
26

Q(k)
16 Q(k)

26 Q(k)
66

⎤⎥⎥⎥⎥⎥⎦
Q(k)

pn = Q(k)
np

T =

⎡⎢⎢⎢⎢⎢⎣
Q(k)

13

Q(k)
23

Q(k)
36

⎤⎥⎥⎥⎥⎥⎦
Q(k)

s =
⎡⎢⎢⎣
Q(k)

55 Q(k)
45

Q(k)
45 Q(k)

44

⎤⎥⎥⎦

(13)

where Q(k)
ij are the three-dimensional stiffness coefficients of the

layer (k).



3.3. The strain

The compatible strain field is obtained from the linear strain-
displacement relations, which in the global reference frame read

𝜀G
ij
(
uG) = 1

2

(
uG
,i + uG

,j

)
(14)

where i, j = X1,X2,X3. The components of the strain tensor can be
calculated with respect to the three bases G, L and R:

𝜀(uG) = 𝜀G
ij (e

i ⊗ ej) = 𝜀L
ij(t

i ⊗ tj) = 𝜀R ij(ai ⊗ aj) = 𝜀R
ij (a

i ⊗ aj) (15)

It must be noted that covariant and contravariant components are the
same in an orthonormal basis, for example ei and ti. This is not the
case when the strain components are expressed in the local reduced
reference frame ai. Therefore, we can express the strain tensor in the
reduced basis in either covariant or contravariant components.

In this work, strain components are first calculated with respect to
the local reduced base vectors, using FE approximations. Then, using
tensorial transformation, they are expressed with respect to the local
cartesian base vectors, in order to take into account the constitutive
equations. Therefore, the local cartesian base vectors must be chosen as
reference frame and introduced in the variational formulation.

For this purpose, we have

𝜖L
ij = 𝜖R

kl (a
k.ti) (al.tj) (16)

This tensorial transformation can be written under matrix product
form, for the following components (11, 22, 12), using the transfor-
mation matrix denoted

[
TTLR

]
. The transformation between local and

reduced for the third index (3 or z) is 1, because same unit vector is
used.

The expression of this transformation is obtained from:

[
TLR

]
=

[
TRL

]−1 with
[
TRL

]
=

[
a1.t1 a1.t2

a2.t1 a2.t2

]
(17)

and using tensorial matrix of order two which have the following
expression:

[
TTLR

]
=

⎡⎢⎢⎢⎢⎢⎣
TLR(1,1)2 TLR(1,2)2 TLR(1,1) TLR(1,2)

TLR(2,1)2 TLR(2,2)2 TLR(2,1) TLR(2,2)

2 TLR(1,1) TLR(2,1) 2 TLR(1,2) TLR(2,2) TLR(1,1) TLR(2,2) + TLR(1,2) TLR(2,1)

⎤⎥⎥⎥⎥⎥⎦
(18)

Finally, we have to calculate the strain in the reduced local basis. In
this local basis, coordinates denoted (1,2) are in fact (𝜉, 𝜂) due to the
use of FE approximation.

We have

𝜖R
ij =

1
2

(
uL
,i . aj + uL

,j . ai

)
(19)

and

uL
,i . aj = uL

k,i (tk . aj) + uL
k (tk,j . ai) (20)

In this last expression, the second term needs to use differential
geometry of shell in order to express derivatives of the base vectors. In
the following, it is neglected in order to simplify the numerical imple-
mentation.

4. First approach: classical LW model with degenerated shell
approach

In this section, the classical LW approach is briefly recalled as it is
widely developed in open literature [5,16]. Hereafter, the developments
are focused on the framework of our degenerated shell approach.

The fourth-order expansion of the displacement in the kth layer is
expressed as

uL(k) =

⎡⎢⎢⎢⎢⎢⎣
u(k)1 (x1, x2, z)

u(k)2 (x1, x2, z)

u(k)3 (x1, x2, z)

⎤⎥⎥⎥⎥⎥⎦
=

5∑
j=1

f j
LW (z)

⎡⎢⎢⎢⎢⎢⎣

u(k)j (x1, x2)

v(k)j (x1, x2)

w(k)
j (x1, x2)

⎤⎥⎥⎥⎥⎥⎦
(21)

where f j
LW (z) are Lagrangian interpolation functions. u(k)j , v(k)j ,w(k)

j
are defined in Ω.

Using this expression to compute the strains in conjunction with the
changes of basis described in Section 3.3 and introducing them in Eq.
(9) with a FE approximation, it drives to a classical linear system to be
solved as

KLWqLW =  LW (22)

where KLW and  LW are the rigidity matrix and the force vector of
the LW approach, qLW contains all the unknown degrees of freedom.
The expression of the classical elementary matrices before the assembly
process is not given for brevity reason.

At each node, the number of unknowns depends on the num-
ber of layers, NLW

dofnode = 3.(4.Nz + 1), where Nz is the number of
numerical layers. Thus, the size of the system increases with Nz as
NLW = 3.(4.Nz + 1).(3.Nx.Ny + 2(Nx + Ny) + 1). NxxNy are the
number of elements in the 𝜉 and 𝜂 directions, respectively.

5. Second approach: application of the Proper Generalized
Decomposition to degenerated shell model

In this section, the application of the PGD is developed for the
present degenerated shell analysis. This work is an extension of the
previous studies on shell structures ([42,43]) to take into account any
geometrical composite shells.

5.1. The displacement

The displacement solution is constructed as the sum of N products
of functions of in-plane coordinates and transverse coordinate (N ∈ ℕ
is the order of the representation) in the global basis:

uG =

⎡⎢⎢⎢⎢⎢⎣
u1(x1, x2, z)

u2(x1, x2, z)

u3(x1, x2, z)

⎤⎥⎥⎥⎥⎥⎦
=

N∑
j=1

⎡⎢⎢⎢⎢⎢⎣
f j
1(z) vj

1(x1, x2)

f j
2(z) vj

2(x1, x2)

f j
3(z) vj

3(x1, x2)

⎤⎥⎥⎥⎥⎥⎦
(23)

where (f j
1, f

j
2, f

j
3) are defined in Ωz and (vj

1, v
j
2, v

j
3) are defined in Ω.

Ω and Ωz are bi-dimensional domain associated with the mid-surface
of the shell, and the unidimensional domain associated with the normal
fiber respectively.

In this paper, a classical eight-node FE approximation is used in Ω
and a LW description is chosen in Ωz as it is particularly suitable for the
modeling of composite structure.

5.2. The problem to be solved

Now, we briefly recall the process to build the different terms (cou-
ples) involving in Eq. (23). Classically, the resolution of Eq. (9) is based



on a greedy algorithm. If we assume that the first m functions have been
already computed, the trial function for the iteration m + 1 is written 
as

um+1 = um +
⎡⎢⎢⎢⎣
f1 v1

f2 v2

f3 v3

⎤⎥⎥⎥⎦ = um + f ∘ v (24)

where the “◦” operator stands for Hadamard’s element-wise product,
(v1, v2, v3) and (f1, f2, f3) are the functions to be computed and um is the
associated known set at iteration m defined by

um =
m∑

i=1

⎡⎢⎢⎢⎣
f i
1 vi

1

f i
2 vi

2

f i
3 vi

3

⎤⎥⎥⎥⎦ (25)

The test functions are

𝛿(f ∘ v) = 𝛿f ∘ v + 𝛿v ∘ f (26)

with

v =
⎡⎢⎢⎢⎣
v1

v2

v3

⎤⎥⎥⎥⎦ f =
⎡⎢⎢⎢⎣
f1
f2
f3

⎤⎥⎥⎥⎦ (27)

Introducing the test function defined by Eq. (26) and the trial func-
tion defined by Eq. (24) into the weak form Eq. (9), the two following
equations to be solved can be deduced:

• for the test function 𝛿f

a(v ∘ f,v ∘ 𝛿f) = b(v ∘ 𝛿f) − a(um,v ∘ 𝛿f) ∀𝛿f (28)

• for the test function 𝛿v

a(f ∘ v, f ∘ 𝛿v) = b(f ∘ 𝛿v) − a(um, f ∘ 𝛿v) ∀𝛿v (29)

The bilinear form a can be written under the following form using
Eq. (12)

a(u, 𝛿u) = ∫


𝛿𝜺L
p

T (
Q(k)

pp 𝜺
L
p + Q(k)

pn 𝜺
L
n

)
+ 𝛿𝜺L

n
T (

Q(k)
np 𝜺

L
p + Q(k)

33𝜺
L
n

)
+ 𝛿𝜺L

s
T
Q(k)

s 𝜺
L
s d

(30)

This expression has to be written in the suitable form depending on the
two problems Eq. (28) and Eq. (29).

This coupled non-linear problem is solved using a classical strategy
based on a fixed point method. For each problem, only unknown 1D or
2D function has to be found. So, the approach leads to the process given
in Algorithm 1. The fixed point algorithm is stopped when the distance
between two consecutive terms are sufficiently small (Cf. [35]).

Algorithm 1 Classical algorithm

for m = 0 to Nmax do
Initialize ṽ(0)
for k = 1 to kmax do

Compute f̃(k) from Eq. (28) (linear equation on Ωz),
ṽ(k−1) being known

Compute ṽ(k) from Eq. (29) (linear equation on Ω), f̃(k)
being known

Check for convergence
end for
Set fm+1 = f̃(k), vm+1 = ṽ(k)
Set um+1 = um + fm+1◦vm+1

Check for convergence
end for

Fig. 2. discretization of the displacements for the PGD method.

5.3. Finite element discretization

In this section, the shell finite element approximation is built. For
the present approach, the computation of the discretized displace-
ments relies on 2 meshes, as shown in Fig. 2. The first one is 1D
with 3 unknowns par node related to the discretization of the z-
functions f1(z), f2(z), f3(z). It is possible to choose different interpo-
lation orders. That will determine the number of nodes of the 1D
mesh. For instance, a fourth-order expansion with NC layers implies
4.NC + 1 nodes (considering one element per physical layer). The sec-
ond one is 2D with 3 unknowns per node related to the discretization of
the in-plane functions v1(x1, x2), v2(x1, x2), v3(x1, x2). Thus, considering
any points on the middle plane of the shell structure, the computa-
tions of the displacements through the thickness depend on the same
N z-functions. The unknown functions of z are global for the whole
shell.

In this work, a discrete representation of the functions (v, f) is intro-
duced, using (i) a classical eight-node shell finite element approxima-
tion in Ω, (ii) Lagrange interpolations in Ωz. The elementary vector of
degrees of freedom (dof) associated with one element Ωe of the mesh
in Ω is denoted qv

e. The vector of dofs associated with the expansion in
Ωz is denoted qf . The displacement field is determined from the values
of qv

e and qf
e by

ve = N𝜉qv
e , fe = Nzq

f
e (31)

The matrices N𝜉 , Nz contain the interpolation functions.

5.4. Finite element problem to be solved on Ω

For the sake of simplicity, the function f̃(k) which is assumed to be
known, will be denoted f̃, and the function ṽ(k) to be computed will be
denoted v. Using the particular form of the displacement Eq. (23) in Eq.
(19) and the FE approximation for v and f, the reduced in-plane, normal
and shear strains can be deduced under the following form:

⎧⎪⎪⎨⎪⎪⎩
𝜺

R
p (̃f v) = 𝚺p

z (̃f ) BaseTAp qv
e

𝜺
R
n (̃f v) = 𝚺n

z (̃f ) BaseTAn qv
e

𝜺
R
s (̃f v) =

[
𝚺s1

z (̃f ) BaseTAs1 + 𝚺s3
z (̃f ) BaseTAs3

]
qv

e

(32)

where BaseTAp, BaseTAn and BaseTAs1, BaseTAs3 contain the
shape functions, their derivatives, the scalar products ti · ai and
ti · ei. Their expressions and those of 𝚺p

z , 𝚺n
z , 𝚺s1

z , 𝚺s3
z are given

in A.1.
Using Eq. (32) and Eq. (16) in the expression Eq. (30), the discretiza-

tion of the bilinear form a in the weak formulation given in Eq. (29) can
be deduced:



a(u, 𝛿u) =
∑

e ∫Ωe
∫Ωz

𝛿qv
e
T

{
BaseTAp

T 𝚺p
z (̃f )

T TTT
LR Q(k)

pp TTLR 𝚺p
z (̃f ) BaseTAp

+ BaseTAp
T 𝚺p

z (̃f )
T TTT

LR Q(k)
pn 𝚺n

z (̃f ) BaseTAn

+ BaseTAn
T 𝚺n
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T Q(k)
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+ BaseTAn
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z (̃f )
T Q(k)

33 𝚺n
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+
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Q(k)
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𝚺s1

z (̃f ) BaseTAs1 + 𝚺s3
z (̃f ) BaseTAs3

] }
qv

e dΩz dΩe

(33)

To split the integration with respect to the midsurface and the z-
coordinate, it is needed to write the three matrix products TTLR 𝚺p

z (̃f ),
TLR 𝚺s1

z (̃f ) and TLR 𝚺s3
z (̃f ) in Eq. (33) under a specific form M1 (̃f )M2.

Thus, we introduce these new expressions as

⎧⎪⎪⎨⎪⎪⎩
TTLR 𝚺p

z (̃f ) = 𝚺p
new (̃f ) MMp

LR

TLR 𝚺s1
z (̃f ) = 𝚺s1

new (̃f ) Ms1
LR

TLR 𝚺s3
z (̃f ) = 𝚺s3

new (̃f ) Ms3
LR

(34)

Only the expressions of 𝚺p
new (̃f ) and MMp

LR are given in A.2. The
same type can be deduced for 𝚺s1

new (̃f ), 𝚺
s3
new (̃f ), Ms1

LR and Ms3
LR

Introducing these new expressions in Eq. (33), a can be advanta-
geously expressed as follows

a(u, 𝛿u) =
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LR
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(35)

with

kpp
z (̃f ) = ∫Ωz
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(36)

Note that the calculation of Eq. (36) is performed using an analytical
integration.

Using Eq. (35), the variational problem defined on Ω from Eq. (29)
leads to the linear system

Kz (̃f )qv = v (̃f , un) (37)

where Kz(̃f ) is deduced from Eq. (35) and qv is the vector of the
nodal displacements in the global basis. The right hand side of Eq. (29)
is not given for brevity reason. The same discretization process is used
to deduce it.

5.5. Finite element problem to be solved on Ωz

For the sake of simplicity, the function ṽ(k−1) which is assumed to
be known, will be denoted ṽ, and the function f̃(k) to be computed will
be denoted f.

Using the particular form of the displacement Eq. (23) in Eq. (19)
and the FE approximation for v and f, the three parts of the strains can
be conveniently written under the following form:

⎧⎪⎪⎨⎪⎪⎩
𝜺

R
p (ṽ f ) = 𝚺p

xy (̃v) BaseNz qf
e

𝜺
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𝜺
R
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xy (̃v) BaseNz qf
e + 𝚺s3

xy (̃v) BaseBz qf
e

(38)

where BaseNz and BaseBz contain the shape functions and their
derivatives. Their expressions and those of 𝚺p

xy (̃v), 𝚺
n
xy (̃v), 𝚺

s1
xy (̃v), 𝚺

s3
xy (̃v)

are given in B.
Starting from the problem to be solved Eq. (28), Eq. (38) and Eq.

(16) can be introduced to deduce the expression of a:
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(39)

By integrating with respect to the in-plane coordinate, Eq. (39)
becomes
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with
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After an assembling procedure, Eq. (40) can be reported in Eq. (28)
to deduce a linear system to be solved:

Kxy (̃v)qf= f (̃v, un) (42)

where Kxy (̃v) is deduced from Eq. (40) and qf is the vector of the
nodal unknowns associated to f. The right hand side of Eq. (28) is
not given for brevity reason. The same discretization process is used
to obtain it.

6. Numerical results

In this section, an eight-node quadrilateral FE based on the
Serendipity interpolation functions is used for the unknowns depending
on the in-plane coordinates. The geometry of the shell is approximated
by this classical FE in the parametric space. A Gaussian numerical inte-

gration with 3 × 3 points is used to evaluate the elementary matrices.
We have developed two different degenerated shell approaches

assuming a fourth-order z-expansion through each layer: (i) the first
one, denoted LD4-S, is based on the LD4 model, as developed in the sys-
tematic work of Carrera and his “Carrera’s Unified Formulation” (CUF),
see Refs. [16,44,45]. In the latter, 12NC + 3 unknown functions per
node are used in this kinematic; (ii) the second one, denoted VS-LD4-
S, is based on the variable separation approach (PGD), the number of
unknowns is reduced to three per node for the 1D and 2D models. The
results are compared with an approach based on an exact geometry
description using LD4 model. It is denoted LD4-M. In the subsequent
examples, this model can be considered as a reference solution. As the
same assumptions on the shell geometry are used for both LD4-S and
VS-LD4-S models, the comparison between these two models allows us
to evaluate only the error associated to the variable separation part.

Several static tests are presented in order to validate our approaches
and evaluate their efficiencies. For each of them, a preliminary conver-
gence study has been carried out to fix the suitable mesh. Only the first
one is presented for conciseness reason. Different boundary conditions,
geometries and number of layers are addressed to assess the present
approaches and highlight the possibilities and limitations.

For the numerical simulations related to the PGD model, two simul-
taneous couples are first computed and the following ones are built
one by one. This strategy is needed to achieve the convergence of the
method.

6.1. Simply-supported cylindrical shell

The first test case is based on a configuration proposed by Ren [46].
It concerns a semi-infinite simply-supported cylindrical shell submitted
to a constant pressure. It is described below:

Fig. 3. Simply supported cylindrical shell (left) - mesh of a quarter of the structure (right).

Fig. 4. convergence study - S = 4 - 𝜑 = 𝜋∕2–3 layers [0◦∕90◦∕0◦].



Fig. 5. convergence study - S = 50 - 𝜑 = 𝜋∕2–3 layers [0◦∕90◦∕0◦].

Fig. 6. distribution of u (left), w (right) along the thickness - convergence study on the couples - S = 10 - 𝜑 = 𝜋∕2–3 layers [0◦∕90◦∕0◦] - VS-LD4-S model.

geometry: composite cross-ply cylindrical shell, R = 10, 𝜑 = 𝜋∕2,
constituted of 3, 6, 9, 24 layers (alternating layers at 0◦ and 90◦). All
layers have the same thickness. S = R

e ∈ {4,10,20,100}. The panel
is supposed infinite along the x2 = 𝜉2 direction (b = 8a) (Cf.
Fig. 3).
boundary conditions: simply-supported shell along its straight
edges, subjected to a constant pressure along the curvature:
q(𝜉1) = q0

material properties:
EL = 25 GPa , ET = 1 GPa , GLT = 0.2 GPa,

GTT = 0.5 GPa , 𝜈LT = 𝜈TT = 0.25
where L refers to the fiber direction, T refers to the transverse direc-
tion.
mesh: only a quarter of the structure is meshed. A space ratio is
considered in these two directions (ratio between the size of the
larger and the smaller element). Different meshes are considered.
See Fig. 3 for instance (Nx = 44, Ny = 10 with a space ratio of 8).
numerical layers: Nz is the total number of numerical layers.
number of dofs for VS-LD4-S: Ndofxy = 3(Nx + 1)(Ny + 1)
and Ndofz = 12 × 𝛼NC + 3 are the number of dofs of the two
problems associated with vi

j and f i
j respectively. 𝛼 is the number of

numerical layers per physical layer. So the total number of dofs is
Ndofxy + Ndofz.
number of dofs for LD4-S: NLW = 3.(4.Nz + 1).(3.Nx.Ny + 2(Nx +
Ny) + 1)
results: The results are made nondimensional using:
u = u1(a∕2, b∕2, z) ET

eq0S3 , w = u3(0, b∕2, z) 100ET
eq0S4 . 𝜎𝛼𝛼 =

𝜎𝛼𝛼 (0,b∕2,z)
q0S2 ,. 𝜎13 = 𝜎13(a∕2,b∕2,z)

q0S , 𝜎33 = 𝜎33(0,b∕2,z)
q0

An error rate is defined as

ΔAV = 100 |x − xAV ||xAV | where x = w, 𝜎13 (43)

the subscript AV stands for the asymptotic value (corresponding to the
refined mesh).

First of all, a convergence study is performed for the three
approaches (Figs. 4 and 5). A three-layer configuration with two slen-
derness ratios (thick and thin shells) is considered. The variations of the
transverse displacement, the transverse shear stress and the error rate
ΔAV (Eq. (43)) with respect to the number of elements along the 𝜉 axis
are reported in these figures. A mesh with a space ratio equal to 8 in the

Fig. 7. distribution of 𝜎11 along the thickness - convergence study on the cou-
ples - S = 10 - 𝜑 = 𝜋∕2–3 layers [0◦∕90◦∕0◦] - VS-LD4-S model.



Fig. 8. distribution of 𝜎13 (left) and 𝜎33 (right) along the thickness - convergence study on the couples - S = 10 - 𝜑 = 𝜋∕2–3 layers [0◦∕90◦∕0◦] - VS-LD4-S model.

Fig. 9. distribution of f i
1 (i = 1,2,3,4) along the thickness - S = 10 -

𝜑 = 𝜋∕2–3 layers [0◦∕90◦∕0◦] - VS-LD4-S model.

two directions is used. It can be inferred from these results that the con-
vergence rate of the shell theory (LD4-M model) is better than the other

one (the degenerated shell). As it will be discussed in the subsequent
examples, the asymptotic value is different for the thick case between
the LD4-M and LD4-S models due to the approximation of the geometry
of the degenerated shell approach. We can also notice that the variable
separation drives to the same results for the displacement. As far as the
transverse shear stress is concerned, the convergence rate is different,
but the asymptotic value is very close.

Based on this study, a 44 × 10 mesh will be used in the following.
Then, the study is focused on the VS-LD4-S model in order to illus-

trate the behavior of the PGD method. A three-layer shell with S = 10
is considered. The behavior of the method is given in Figs. 6–8. These
figures show the convergence of the PGD process on both displacements
and stresses. The two first couples allow us to build a solution very close
to the converged one. The following couples bring only small correc-
tions on the transverse stresses.

For further illustration, the functions f i
1(z) are given in Fig. 9. The

two first functions are constant and linear, corresponding to classical
models (FSDT). Then, the distribution of the two other couples is more
complex, they represent small contributions to the whole solution.

The present method is also assessed for different slenderness ratios,
from thick to thin shell. In Table 2, the results are compared with
the LD4-S approach for displacements, in-plane and transverse stresses.

Table 2
Comparison VS-LD4-S/LD4-S - [0◦∕90◦∕0◦] - 𝜑 = 𝜋∕2 - Nz = NC.

S u(e∕2) w(0) 𝜎11(−e∕2) 𝜎13(0) 𝜎33max

4 VS-LD4-S 36.2634 (0.0%) 2.1742 (0.1%) −3.6118 (0.4%) 1.1382 (2.0%) −1.8696 (0.8%)
LD4-S 36.2520 2.1716 −3.5966 1.1620 −1.8843

10 VS-LD4-S 42.1928 (0.0%) 0.9525 (0.1%) −2.7815 (0.3%) 1.2939 (1.0%) −5.4830 (0.9%)
LD4-S 42.1756 0.9519 −2.7732 1.3065 −5.5322

20 VS-LD4-S 71.3874 (0.0%) 0.7651 (0.0%) −2.6405 (0.1%) 1.3191 (2.3%) −11.6381 (1.0%)
LD4-S 71.3923 0.7648 −2.6391 1.3507 −11.7616

100 VS-LD4-S 344.2876 (0.1%) 0.6877 (0.0%) −2.5798 (0.0%) 1.3709 (0.9%) −57.0588 (0.2%)
LD4-S 344.5605 0.6878 −2.5794 1.3837 −56.9431

Table 3
Comparison VS-LD4-S/LD4-M - [0◦∕90◦∕0◦] - 𝜑 = 𝜋∕2 - Nz = NC.

S u(h∕2) w(0) 𝜎11(−h∕2) 𝜎13(0) 𝜎33max

4 VS-LD4-S 36.2634 (10.0%) 2.1742 (9.8%) −3.6118 (21.3%) 1.1382 (12.3%) −1.8696 (17.5%)
LD4-M 40.2734 2.4097 −4.5877 1.2974 −2.2653

10 VS-LD4-S 42.1928 (4.4%) 0.9525 (4.4%) −2.7815 (8.3%) 1.2939 (5.6%) −5.4830 (5.5%)
LD4-M 44.1184 0.9968 −3.0331 1.3702 −5.8036

20 VS-LD4-S 71.3874 (2.3%) 0.7651 (2.3%) −2.6405 (4.1%) 1.3191 (4.7%) −11.6381 (0.3%)
LD4-M 73.1034 0.7834 −2.7547 1.3841 −11.6040

100 VS-LD4-S 344.2876 (0.2%) 0.6877 (1.6%) −2.5798 (0.7%) 1.3709 (1.2%) −57.0588 (0.7%)
LD4-M 345.0776 0.6990 −2.5981 1.3875 −57.4470



Fig. 10. distribution of 𝜎11 (left) and 𝜎33 (right) along the thickness - S = 4 - 3 layers.

Table 4
Comparison VS-LD4-S/LD4-M - 𝜑 = 𝜋∕2 - S = 10 - Nz = NC.

NC u(e∕2) w(0) 𝜎11(−e∕2) 𝜎13 max 𝜎33max

6 VS-LD4-S 70.8408 (2.7%) 1.6747 (2.6%) −4.4873 (7.3%) 1.5219 (4.6%) −5.9020 (5.6%)
LD4-M 72.7697 1.7194 −4.8381 1.5954 −6.2529

9 VS-LD4-S 54.1182 (4.4%) 1.2318 (4.5%) −3.7848 (8.7%) 1.3624 (3.3%) −5.2850 (6.4%)
LD4-M 56.6165 1.2895 −4.1451 1.4096 −5.6479

24 VS-LD4-S 67.3724 (4.0%) 1.5552 (4.0%) −4.7467 (8.6%) 1.4873 (3.1%) −5.8211 (4.0%)
LD4-M 70.1935 1.6203 −5.1951 1.5355 −6.0636

Fig. 11. distribution of 𝜎11 (left), 𝜎13 (middle) and 𝜎33 (right) along the thickness - S = 10 - 9 layers.

Two, three or four couples are built depending on the slenderness ratio.
The excellent agreement with the LD4-S model shows that the variable
separation does not introduce additional errors for the solution regard-
less of the value of S.

The results are also compared with the LD4-M model (cf. Table 3).
It can be inferred from this table that the slenderness ratio has an influ-
ence on the results. For very thick case, the simplified assumption on
the geometry of the shell drives to a significant error rate (from 10 to
21%). For further illustration, Fig. 10 shows the distribution of the in-
plane and transverse normal stresses through the thickness at the cen-
ter of the structure. The main difference between the two approaches
occurs at the bottom of the shell. Nevertheless, we can notice that the
present method can be applied for semi-thick to thin structures as the
error rate becomes acceptable.

Finally, the approach is assessed on a semi-thick shell (S = 10) for
different numbers of layers (NC = 6,9,24). The choice of this config-
uration comes from the previous analysis where the error rate remains
good. From Table 4, we can notice that the error rate is less than 4.5%
for the displacements and 8.7% for the stresses when compared with
the reference solution. Through-thickness distribution of stresses for a
9-layer configuration are also plotted in Fig. 11. The present distribu-
tions are in excellent agreement with the LD4-S model and the accuracy

Fig. 12. shell panel with rigid diaphragm.

of this approach is very good with respect to the reference solution.
Equivalent Single models fail to model shell structures with these stack-
ing sequences.



Fig. 13. distribution of the error with respect to the number of couples - NC = 3
- rigid diaphragm - S = 20 - R∕a = 2

6.2. Shell panel with rigid diaphragm

In this section, the present test involves a shell panel with a rigid
diaphragm. The main characteristics are given as follows

geometry: composite cross-ply shell panel, R = 3, b = 6, different
values of parameter R∕a ∈ {1,2,10,20}, constituted of 3 layers
[0◦∕90◦∕0◦]. S = 10,20. All layers have the same thickness. See
Fig. 12.
boundary conditions: rigid diaphragm along its curved edges, sub-
jected to a constant pressure on the top surface along the curvature:
q0
material properties: same materials as in Section 6.1
mesh: only a quarter of the structure is meshed (Nx = Ny = 24
with a space ratio of 5)
numerical layers: Nz is the total number of numerical layers.
number of dofs for VS-LD4-S: Ndofxy = 1875 and
Ndofz = 12 × 𝛼NC + 3

Fig. 14. distribution of the error with respect to the number of couples for different values of R∕a - NC = 3 - rigid diaphragm - S = 20.

Table 5
Comparison VS-LD4-S/LD4-S - rigid diaphragm - NC = 3.

S R∕a w(0) 𝜎11(−h∕2) 𝜎33max

1 2 10 20 1 2 10 20 1 2 10 20

10 VS-LD4-S 2.6959 9.6849 13.4178 13.4262 0.5298 −0.1752 0.1295 −0.2346 1.2231 1.1980 1.5897 1.5719
Err-LD4-S 0.00% 0.00% 0.00% 0.00% 0.60% 1.29% 0.24% 1.20% 2.48% 2.24% 4.68% 3.31%
LD4-S 2.6959 9.6852 13.4173 13.4259 0.5330 −0.1775 0.1292 −0.2374 1.1934 1.1718 1.5187 1.6256

20 VS-LD4-S 0.7776 5.1578 13.2319 13.2689 0.4250 0.1157 0.1337 0.1256 1.8421 1.4076 2.5579 2.4259
Err-LD4-S 0.00% 0.01% 0.00% 0.00% 0.29% 2.55% 0.05% 0.02% 2.71% 19.72% 11.12% 0.36%
LD4-S 0.7776 5.1581 13.2324 13.2693 0.4262 0.1128 0.1336 0.1257 1.8934 1.1757 2.3019 2.4348

Table 6
Comparison VS-LD4-S/LD4-S/LD4-M - rigid diaphragm - NC = 3 - fi(z) updated.

S R∕a w(0) 𝜎11(−h∕2) 𝜎33max

1 2 10 20 1 2 10 20 1 2 10 20

10 VS-LD4-S 2.6971 9.6868 13.4184 13.4266 0.5306 −0.1826 0.1293 −0.2365 1.2152 1.1658 1.5307 1.6107
Err-LD4-S 0.04% 0.02% 0.01% 0.00% 0.44% 2.85% 0.13% 0.40% 1.82% 0.51% 0.79% 0.92%
Err-LD4-M 4.80% 4.84% 4.78% 4.78% 3.30% 6.71% 3.74% 2.42% 1.50% 2.66% 0.22% 3.59%
LD4-S 2.6959 9.6852 13.4173 13.4259 0.5330 −0.1775 0.1292 −0.2374 1.1934 1.1718 1.5187 1.6256
LD4-M 2.8331 10.1792 14.0916 14.1006 0.5487 0.1711 0.1344 −0.2424 1.1972 1.1356 1.5274 1.6706

20 VS-LD4-S 0.7778 5.1588 13.2326 13.2695 0.4247 0.1159 0.1336 0.1257 1.9206 1.2228 2.3452 2.4346
Err-LD4-S 0.03% 0.02% 0.00% 0.00% 0.35% 1.86% 0.02% 0.02% 1.44% 1.48% 1.88% 0.01%
Err-LD4-M 2.44% 2.49% 2.47% 2.46% 2.46% 9.41% 1.90% 1.97% 0.33% 6.66% 3.98% 1.18%
LD4-S 0.7776 5.1581 13.2324 13.2693 0.4262 0.1128 0.1336 0.1257 1.8934 1.1757 2.3019 2.4348
LD4-M 0.7972 5.2905 13.5671 13.6046 0.4354 0.1050 0.1362 0.1282 1.9142 1.1185 2.2555 2.4061



Fig. 15. distribution of 𝜎11 through the thickness - NC = 3 - rigid diaphragm -
S = 20.

number of dofs for LD4-S: NLW = 71175 for Nz = 3,
NLW = 136875 for Nz = 6
results: The results are made nondimensional using: w =

u3(a∕2, b∕2, z) 100ET
eq0S4 . 𝜎𝛼𝛼 = 𝜎𝛼𝛼 (a∕2,b∕2,z)

q0S2 ,. 𝜎33 = 𝜎33(a∕2,b∕2,z)
q0

reference solution: LD4-M model

For this test case, different values of the parameter R∕a are con-
sidered referring to deep or shallow shells. The convergence in terms
of number of couples is given in Fig. 13 for S = 20, R∕a = 2. A high
convergence rate is found for the transverse displacement, while more
couples are needed to obtain the transverse normal stress with accuracy.
For this configuration, eight couples are built. Further illustrations are
shown in Fig. 14 where different values of R∕a are considered. The
previous remark remains true. The convergence rate of the different
mechanical quantities is not the same. A small error rate is obtained for
the transverse displacement with few couples, that is not the case for
𝜎33. Moreover, it can be noticed that the configuration with R∕a = 2
seems to be the most severe case for this example.

Numerical results are also summarized in Table 5 where the two
present approaches are compared for two slenderness ratios. The results
are in very good agreement for the transverse displacements and the in-
plane stress. But, a substantial error can be noted for the transverse
stress. As in Ref. [43], it can be reduced by updating the z-functions
fi. This is achieved efficiently (see Table 6), and the maximum error
rate for 𝜎33 decreases from 19% to 1.8%. The results can be also com-
pared with the reference solution (LD4-M). The displacement drives
to a maximum error rate of 4.9%, while the maximal error rate on
the stresses is 9%. It is related to the case R∕a = 2. This error comes
from the assumptions on the geometry of the shell. To show the wide
range of configurations involved in this test, Fig. 15 illustrates the

Fig. 16. distribution of 𝜎33 along the thickness - Nz = 3 (left)/Nz = 6 (right) numerical layers - NC = 3 - rigid diaphragm - S = 10 - R∕a = 20

Fig. 17. distribution of 𝜎11 along the thickness - NC = 3∕4∕7∕10 - spherical shell - R∕a = 5



various distributions of the in-plane stress through the thickness for
R∕a = 1, 2, 10, 20. Despite the complexity of these distributions, the 
present approach drives to satisfactory results when compared with the 
reference solution.

Another aspect is addressed in Fig. 16. For S = 10 and R∕a = 20,
oscillations in the first and third layers occur in the distribution of the
transverse normal stress (Fig. 16 left). It can be overcome by introduc-
ing numerical layers in each physical layer (Nz = 6). The new results
are given in Fig. 16 right. As the problem to be solved is split into an in-
plane/out-of-plane problem, it does not affect the computational cost of
the method as in Refs. [42,43]. Note that the same phenomenon occurs
for the in-plane stress, but it is not shown for brevity reason.

6.3. Spherical shell

A doubly-curved laminated composite structure is considered in this
section. The test is described as follows

geometry: spherical square composite cross-ply shell, R = 3,
R∕a = 5, with 3/4/7/10 layers. S = 25. All the layers have the
same thickness.
boundary conditions: clamped shell on all edges, subjected to a
constant pressure q0
material properties: same materials as in Section 6.1
mesh: only a quarter of the structure is meshed. Nx = 24, Ny = 24
number of dofs for VS-LD4-S: Ndofxy = 1875 and
Ndofz = 12 × NC + 3. Ndofz = 39 to Ndofz = 123 (3/10 layers)
number of dofs for LD4-S: NLW = 71175 for Nz = 3,
NLW = 224475 for Nz = 10
results: The results are made nondimensional using: 𝜎11 =
𝜎11(a∕2,b∕2,z)

q0S2 ,

reference solution: LD4-M model

The distribution of 𝜎11 along the thickness at the center of the shell
is given in Fig. 17 for different numbers of layers. Seven couples are

computed for VS-LD4-S model. It can be inferred from this figure that
the results of the present approaches are in very good agreement with
the reference solution. For such structures, the use of variable separa-
tion does not affect the accuracy of the results (Fig. 17 left). Moreover,
the number of unknowns involved in the VS-LD4-S model remains low
despite the increase of the number of layers.

7. Conclusion

In this article, two degenerated shell approaches are applied in con-
junction with a LayerWise approach and a variable separation method
for the modeling of composite structures. A fourth-order LW descrip-
tion of the displacements is used. The two models are assessed through
a wide range of configurations involving different geometries, stacking
sequences and boundary conditions. The results are compared with a
reference solution which comes from a model available in open liter-
ature. Accurate results have been obtained despite the assumptions on
the geometry of the shell. The approaches have the capability to model
semi-thick to thin structures. Moreover, if needed, numerical layers in
each physical layer can be introduced without increasing significantly
the computational cost for the model based on the variable separation.

Based on these promising results, the membrane and shear locking
phenomenon will be addressed in future investigation.
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Appendix A. Finite element problem to be solved on Ω

Appendix A.1. Expression of BaseTA□ and 𝚺□
z (̃f )

BaseTAp =
⎡⎢⎢⎢⎣
TAp1 03×1 03×1

03×1 TAp2 03×1

03×1 03×1 TAp3

⎤⎥⎥⎥⎦ (A.1)

with

TApi = t1 . ei

⎡⎢⎢⎢⎣
t1 . a1 N𝜉,𝜉

t1 . a2 N𝜉,𝜂

t1 . a1 N𝜉,𝜂 + t1 . a2 N𝜉,𝜉

⎤⎥⎥⎥⎦+ t2 . ei

⎡⎢⎢⎢⎣
t2 . a1 N𝜉,𝜉

t2 . a2 N𝜉,𝜂

t2 . a1 N𝜉,𝜂 + t2 . a2 N𝜉,𝜉

⎤⎥⎥⎥⎦ , i = 1,2,3

BaseTAn =
⎡⎢⎢⎢⎣
t3 . e1 N𝜉 0 0

0 t3 . e2 N𝜉 0

0 0 t3 . e3 N𝜉

⎤⎥⎥⎥⎦ (A.2)

BaseTAs1 =
⎡⎢⎢⎢⎣
TAs11 02×1 02×1

02×1 TAs12 02×1

02×1 02×1 TAs13

⎤⎥⎥⎥⎦ (A.3)



with

TAs1i = t3 . ei

[
N𝜉,𝜂

N𝜉,𝜉

]
, i = 1,2,3

BaseTAs3 =
⎡⎢⎢⎢⎣
TAs31 02×1 02×1

02×1 TAs32 02×1

02×1 02×1 TAs33

⎤⎥⎥⎥⎦ (A.4)

with

TAs3i = t1 . ei

[
t1 . a2 N𝜉

t1 . a1 N𝜉

]
+ t2 . ei

[
t2 . a2 N𝜉

t2 . a1 N𝜉

]
, i = 1,2,3

𝚺p
z (̃f ) =

[̃
f1 Id3×3 ⋮ f̃2 Id3×3 ⋮ f̃ 3 Id3×3

]
(A.5)

𝚺n
z (̃f ) =

[̃
f ′1 ⋮ f̃ ′2 ⋮ f̃ ′3

]
(A.6)

𝚺s1
z (̃f ) =

[̃
f1 Id2×2 ⋮ f̃ 2 Id2×2 ⋮ f̃3 Id2×2

]
(A.7)

𝚺s3
z (̃f ) =

[̃
f ′1 Id2×2 ⋮ f̃ ′2 Id2×2 ⋮ f̃ ′3 Id2×2

]
(A.8)

where Idi×i is the i × i identity matrix.

Appendix A.2. Expression of 𝚺□
new (̃f ) and MMp

LR

𝚺p
new (̃f ) = 𝚺p

z (̃f ) (A.9)

MMp
LR =

⎡⎢⎢⎢⎣
TTLR 03×3 03×3

03×3 TTLR 03×3

03×3 03×3 TTLR

⎤⎥⎥⎥⎦ (A.10)

Appendix B. Finite element problem to be solved on Ωz

Appendix B.1. Expression of BaseNz and BaseBz

BaseNz =
⎡⎢⎢⎢⎣
Nz 0 0

0 Nz 0

0 0 Nz

⎤⎥⎥⎥⎦ (B.1)

BaseBz =
⎡⎢⎢⎢⎣
Nz,z 0 0

0 Nz,z 0

0 0 Nz,z

⎤⎥⎥⎥⎦ (B.2)

Appendix B.2Expression of 𝚺□
xy (̃v)

𝚺p
xy (̃v) =

⎡⎢⎢⎢⎣
tta11 ṽ1,𝜉 tta12 ṽ2,𝜉 tta13 ṽ3,𝜉

tta21 ṽ1,𝜂 tta22 ṽ2,𝜂 tta23 ṽ3,𝜂

tta11 ṽ1,𝜂 + tta21 ṽ1,𝜉 tta12 ṽ2,𝜂 + tta22 ṽ2,𝜉 tta13 ṽ3,𝜂 + tta23 ṽ3,𝜉

⎤⎥⎥⎥⎦ (B.3)

with ttaij = t1.ejt1.ai + t2.ejt2.ai



𝚺n
xy (̃v) =

[
t3 . e1 ṽ1 t3 . e2 ṽ2 t3 . e3 ṽ3

]
(B.4)

𝚺s1
xy (̃v) =

[
t3 . e1 ṽ1,𝜂 t3 . e2 ṽ1,𝜂 t3 . e3 ṽ1,𝜂

t3 . e1 ṽ1,𝜉 t3 . e2 ṽ1,𝜉 t3 . e3 ṽ1,𝜉

]
(B.5)

𝚺s3
xy (̃v) =

[
tta21 ṽ1 tta22 ṽ2 tta23 ṽ3

tta11 ṽ1 tta12 ṽ2 tta13 ṽ3

]
(B.6)
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