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Abstract

This work deals with the modeling of plate structures constituted of Functionally Graded

Material through a variable separation approach. The displacement field is approximated as

a sum of separated functions of the in-plane coordinates x, y and the transverse coordinate

z. This choice yields to a non-linear problem that can be solved by an iterative process.

Two 2D and 1D linear problems are solved successively. In the thickness direction, a fourth-

order expansion in each layer is considered. For the in-plane description, classical Finite

Element method is used. The number of unknowns is reduced compared to classical layerwise

approach.

Classical numerical tests encountered in the literature are provided to show the accuracy

of the present LayerWise (LW) method. The plate can be constituted of a FGM layer or

combined FGM/orthotropic layers. Different slenderness ratios and anisotropy indexes are

also considered. Accurate results with a low computational cost are obtained when compared

with reference solutions and models available in literature.

Keywords: Functionally graded materials, Layerwise approach, Separation of variables,

Finite Element

1. Introduction

In this study, Functionally Graded Materials (FGM) in which the mechanical properties

vary smoothly and continuously from one surface to the other are considered. To obtain



that, different ways of manufacturing process can be performed (see [1, 2]). One of the ad-

vantages is the elimination of the transverse stresses discontinuity which can be encountered 

in laminated composite. Thus, it allow us to avoid one of the most critical failure mode, 

i.e. the delamination process. Other attractive characteristics can be mentionned such as: 

enhanced thermal properties, higher fracture toughness, ... [3]. Note that FGM can be used 

for a wide field of applications (see [4, 2]). That justifies the increasing interest for this type 

of materials. Thus, it will be important to have efficient numerical tools so as to compute 

accurate displacements and stresses for design purpose.

These topics have been the focus of attention of many researchers during the past few years. 

Different three-dimensional models have been carried out in [5–7] for FGM and sandwich 

plates, but the computational cost becomes high. Thus, a wide range of 2D models with a 

low number of generalized unknowns has been developed. For that, the displacements are 

expressed through the whole thickness of the plate (Equivalent Single Layer model - ESL). 

Classical Laminate Theory and First-order Shear Deformation Theory (FSDT) have been 

considered in [8] and [9], respectively. But, the first one fails to predict accurate results 

for thick cases and the second one needs a shear correction factor. So, Higher-order Shear 

Deformation Theory (HSDT) has been proposed considering different types of shear strain 

shape functions: polynomial [10, 9, 11, 12], trigonometric [12], inverse trigonometric [13], 

specified [14, 15] forms. But, as it has been highlighted in [16], the stretching effect is of 

major importance for the modeling of this type de materials. Thus, these HSDT models 

have been extended to take into account this phenomenon. They can be again classified 

depending of the strain shape functions as previously: polynomial [17–19], trigonometric 

[20–24], exponential [25], hyperbolic [26, 27], hybrid [22, 25] forms. Note that most of these 

approaches are built such that the free boundary conditions on the top and bottom surfaces 

are fullfiled. It should be also mentioned that some of these works needs the determination 

of one or two parameters involved in the expression of the kinematics, see [23, 27, 13, 12, 15]. 

This type of models can be well-suited for monolayered structure, but limitations appear 

considering multi-layered or sandwich panels. An alternative and simple way consists in in-

cluding the so-called Murakami’s zig-zag function as in [18], but more precised theories have



been developed based on a LayerWise approach (LW). Note the extensive works based on the 

systematic approach developed by Carrera with his Carrera’s Unified Formulation (CUF) 

and its extension to FGM material in [28]. Displacement-based and Reissner’s Mixed Vari-

ational Theorem (RMVT) approaches are addressed in [29, 16]. Discrete layers have been 

also considered in [30]. Only partial works on the modeling of FGM plate structures have 

been given herein and interested readers can refer to the reviews provided in [31, 32, 4, 33, 34].

Over the past years, some methods based on the separation of variables have shown 

interesting features to model composite structures. For FGM material, the extended Kan-

torovich method has been applied in [35]. Another interesting way is based on the so-called 

Proper Generalized Decomposition (PGD). It has been successfully developed for the mod-

eling of laminated and sandwich structures [36–39] and will be extended hereafter for the 

analysis of FGM plates. In this purpose, the displacements are written under the form of 

a sum of products of bidimensional functions of (x,y) and unidimensional functions of z. A 

piecewise fourth-order Lagrange polynomial of z is chosen and a 2D eight-node quadrilateral 

FE is employed for the in-plane coordinates. Each unknown function of (x,y) is classically 

approximated using one degree of freedom (dof) per node of the mesh and the LW unknown 

functions of z are global for the whole plate. Finally, the deduced non-linear problem im-

plies the resolution of 2D and 1D problems alternatively, in which the number of unknowns 

is smaller than a classical Layerwise approach. Considering the models developed in open 

literature, it calls for a well-suited kinematics, i.e. a relevant shear strain shape function. 

The present work allows us to determine automatically the z-functions. Moreover, any con-

figurations could be considered, namely structures constituted of only FGM or combined 

FGM/classical (laminated) layers.

The article is organized as follows. Firstly, the classical mechanical problem involving a 

FGM is given. Then, the formulation of the PGD is described in this particular framework. 

The assumption on the displacements yields a non-linear problem that is solved using an 

iterative process. The FE discretization is also described. The separation variables can



be efficiently applied as the in-plane and out-of-plane integrations can be split. Finally,

numerical results are provided to assess the accuracy of the method. Classical examples are

addressed and the results are compared with both reference solutions and results available

in open literature. The influence of the slenderness ratio and a characteristic parameter of

the FGM (volume fraction exponent) is studied. The present approach also allows us to

modelize the FGM with piecewise constant mechanical properties through the thickness at

a low computational cost.

2. Reference problem description: the governing equations

Let us consider a composite plate structure occupying the domain V = Ω × Ωz where

Ω = [0, a]× [0, b] (a, b being the dimensions of the plate) and Ωz = [−h
2
, h
2
] in a Cartesian

coordinate (x, y, z). h is the thickness of the plate, see Fig. 1.

[Figure 1 about here.]

2.1. Constitutive relation

As we are interested in the analysis of FGM plates, the continuous variations of the

material characteristics along the thickness have to be well described. The FGM layers can

be single or embedded in other isotropic/orthotropic/FGM layers. Classically, exponential

and/or polynomial functions are applied to either engineering constants (Young Modulus,

shear Modulus, Poisson ratio) or directly to material stiffnesses Cij.

The plate can be made of NC perfectly bonded classical/FGM layers. The constitutive

equations for a layer k can be written as

σ(k) = C(k)(z)ε zεΩk
z with Ωz = ∪NC

k=1Ω
k
z

(1)

where we denote the stress vector by σ, the strain vector via ε.



We have

C(k)(z) =




C
(k)
11 C

(k)
12 C

(k)
13 0 0 C

(k)
16

C
(k)
22 C

(k)
23 0 0 C

(k)
26

C
(k)
33 0 0 C

(k)
36

C
(k)
44 C

(k)
45 0

sym C
(k)
55 0

C
(k)
66




(2)

where C
(k)
ij are the three-dimensional stiffness coefficients of the layer (k).

In the present work, without loss of generality, we assume that we can write the consti-

tutive law as

C(k)(z) = g(k)(z) C
(k)
0

(3)

where C
(k)
0 is constant in each layer. If needed, the decomposition of the matrix C(k)(z) can

be splited into several terms to keep the efficiency of the method.

Note that g(k)(z) is constant for a classical isotropic or orthotropic layer.

2.2. The weak form of the boundary value problem

In the present work, a static problem is studied. For conciseness reason, the body force

density is not considered. The surface force t is applied on ∂VF = ∂VFxy ×{zF}. We assume

that a prescribed displacement u = 0 is imposed on ΓD. Thus, the classical problem to be

solved can be formulated as follows:

Using the above matrix notations and for admissible displacement δu ∈ δU , the varia-

tional principle is given by:

find u ∈ U such that

−
∫
V
ε(δu)T σ dV +

∫
∂VF

δuT t d∂V = 0, ∀δu ∈ δU (4)

where U is the space of admissible displacements, i.e. U = {u ∈ (H1(V))3/u = 0 on ΓD}. 
We have also δU = {u ∈ (H1(V))3/u = 0  on  ΓD}.



This problem can be expressed as

a(u, δu) = b(δu) ∀δu ∈ δU (5)

with

a(u, δu) =

∫
V
ε(δu)TC(z)ε(u) dΩ dΩz

b(δu) =

∫
∂VF

δuT t d∂V
(6)

3. Application of the separated representation to the FGM plate

The present section focuses on the procedure that allows us to expand the PGD to

the analysis of FGM layers. This specific separation has shown interesting features in the

framework of static analysis [37, 39]. The separated formulation is briefly introduced in the

subsequent sections.

3.1. The displacement and the strain field

In the framework of the PGD, the displacement solution u is classically written as the

sum of N products of separated functions (N ∈ N
+ is the order of the representation)

u(x, y, z) =

N∑
i=1

f i(z) ◦ vi(x, y) (7)

where f i(z) and vi(x, y) are unknown functions which must be computed during the resolu-

tion process. f i(z) and vi(x, y) are defined on Ωz and Ω respectively. The “◦” operator in

Eq. (7) is Hadamard’s element-wise product. We have:

f i ◦ vi = vi ◦ f i =




f i
1(z)v

i
1(x, y)

f i
2(z)v

i
2(x, y)

f i
3(z)v

i
3(x, y)


 with vi =




vi1(x, y)

vi2(x, y)

vi3(x, y)


 f i =




f i
1(z)

f i
2(z)

f i
3(z)


 (8)

The strain can be expressed with respect to the reference frame in which the dependance

with respect to the space coordinates is omitted as follows:



ε(u) =
N∑
i=1




f i
1 v

i
1,1

f i
2 v

i
2,2

(f i
3)

′ vi3

(f i
2)

′ vi2 + f i
3 v

i
3,2

(f i
1)

′ vi1 + f i
3 v

i
3,1

f i
1 v

i
1,2 + f i

2 v
i
2,1




(9)

where the prime stands for the classical derivative (f ′
i =

dfi
dx

), and (),α for the partial

derivative.

3.2. Formulation of the problem to be solved

An iterative procedure is performed to solve Eq. (5) (greedy algorithm). If we assume

that the first n functions have been already computed, the trial function for the iteration

n+ 1 is written as

un+1 = un + f ◦ v = un +




f1v1

f2v2

f3v3


 (10)

where (f1, f2, f3) and (v1, v2, v3) are the functions to be computed and un is the associated

known set at iteration n defined by

un =
n∑

i=1




f i
1 v

i
1

f i
2 v

i
2

f i
3 v

i
3


 (11)

The test functions are

δ(f ◦ v) = δf ◦ v + δv ◦ f (12)

with

v =




v1

v2

v3


 f =




f1

f2

f3


 (13)



Introducing the test function defined by Eq. (12) and the trial function defined by Eq.

(10) into the weak form Eq. (5), the two following equations to be solved can be deduced:

• for the test function δf

a(v ◦ f ,v ◦ δf) = b(v ◦ δf)− a(un,v ◦ δf) ∀δf (14)

• for the test function δv

a(f ◦ v, f ◦ δv) = b(f ◦ δv)− a(un, f ◦ δv) ∀δv (15)

From Eq. (14) and Eq. (15), a coupled non-linear problem is derived. A fixed point

method is a simple way to solve it. Starting from an initial function (f̃ (0), ṽ(0)), we construct

a sequence (f̃ (l), ṽ(l)) which satisfy Eq. (14) and Eq. (15) respectively. Only 1D or 2D

functions have to be found, as the other one is assumed to be known (from the previous

step of the fixed point strategy). The fixed point algorithm is stopped when the distance

between two consecutive terms are sufficiently small.

3.3. Finite element discretization

In this section, a classical finite element approximation in Ω and Ωz for (v, f) is intro-

duced. The elementary vector of degrees of freedom (dof) associated with one element Ωe of

the mesh in Ω is denoted qv
e . The elementary vector of dofs associated with one element Ωze

of the mesh in Ωz is denoted qf
e . The displacement and strain fields are determined from

the values of qv
e and qf

e by

ve = Nxyq
v
e , Ee

v = Bxyq
v
e ,

fe = Nzq
f
e , Ee

f = Bzq
f
e

(16)

where

Ee
v
T =

[
v1 v1,1 v1,2 v2 v2,1 v2,2 v3 v3,1 v3,2

]

Ee
f
T =

[
f1 f

′
1 f2 f

′
2 f3 f

′
3

]

The matrices Nxy, Bxy, Nz, Bz contain the interpolation functions, their derivatives and

the jacobian components.



3.4. Finite element problem to be solved on Ω

For the sake of simplicity, the functions f̃ (l) which are assumed to be known, will be

denoted f̃ . And the function ṽ(l) to be computed will be denoted v. The strains included

in Eq. (15) are defined as

ε(f̃ ◦ v) = Σz(f̃)Ev (17)

with

Σz(f̃) =




0 f̃1 0 0 0 0 0 0 0

0 0 0 0 0 f̃2 0 0 0

0 0 0 0 0 0 f̃
′
3 0 0

0 0 0 f̃
′
2 0 0 0 0 f̃3

f̃
′
1 0 0 0 0 0 0 f̃3 0

0 0 f̃1 0 f̃2 0 0 0 0




(18)

For convenience reasons, the displacement u is written under the form u = Dz(f̃)v =


f̃1 0 0

0 f̃2 0

0 0 f̃3


v

The variational problem defined on Ω from Eq. (15) is∫
Ω

δEvTkz(f̃)EvdΩ =

∫
∂VFxy

δvTFz(f̃) d∂V −
∫
Ω

δEvTσz(f̃ , u
n)dΩ (19)

where

kz(f̃) =

NC∑
k=1

∫
Ωk

z

g(k)(z) Σz(f̃)
TC

(k)
0 Σz(f̃)dz

σz(f̃ , u
n) =

NC∑
k=1

∫
Ωk

z

g(k)(z) Σz(f̃)
TC

(k)
0 ε(un)dz

Fz(f̃) = Dz(f̃)
T t
∣∣∣
z=zF

(20)

The introduction of the finite element approximation Eq. (16) in the variational Eq.

(19) leads to the linear problem:

(21)Kz(f̃) qv = Rvz( f̃ ,  un) 



where

• qv is the vector of the nodal displacements, associated with the finite element mesh in

Ω,

• Kz(f̃) is the mechanical stiffness matrix obtained by summing the elements’ stiffness

matrices Ke
z(f̃) =

∫
Ωe

[
BT

xykz(f̃)Bxy

]
dΩe

• Rvz(f̃ , u
n) is the equilibrium residual obtained by summing the elements’ residual load

vectors Re
vz(f̃ , u

n) =

∫
∂Ve

Fxy

NT
xyFz(f̃)d∂Ve −

∫
Ωe

BT
xyσz(f̃ , u

n)dΩe

3.5. Finite element problem to be solved on Ωz

As in the previous section, the known functions ṽ(l−1) will be denoted ṽ and the functions

f̃ (l) to be computed will be denoted f . The strain included in Eq. (14) is defined as

ε(ṽ ◦ f) = Σxy(ṽ)Ef (22)

where

Σxy(ṽ) =




ṽ1,1 0 0 0 0 0

0 0 ṽ2,2 0 0 0

0 0 0 0 0 ṽ3

0 0 0 ṽ2 ṽ3,2 0

0 ṽ1 0 0 ṽ3,1 0

ṽ1,2 0 ṽ2,1 0 0 0




(23)

and the displacement is u = Dxy(ṽ)Ef =




ṽ1 0 0 0 0 0

0 0 0 0 0 0

0 0 ṽ2 0 0 0

0 0 0 0 0 0

0 0 0 0 ṽ3 0

0 0 0 0 0 0




Ef



The variational problem defined on Ωz from Eq. (14) is

NC∑
k=1

∫
Ωk

z

g(k)(z) δEfTk(k)
xy (ṽ)Efdz = δEfT

∣∣
z=zF

Fxy(ṽ)−
NC∑
k=1

∫
Ωk

z

g(k)(z) δEfTσxy
(k)(ṽ, un)dz

(24)

where k
(k)
xy (ṽ), σxy

(k)(ṽ, un) and Fxy(ṽ) can be expressed under the following separated

form:

k(k)
xy (ṽ) =

∫
Ω

Σxy(ṽ)
TC

(k)
0 Σxy(ṽ)dΩ

σxy
(k)(ṽ, un) =

∫
Ω

Σxy(ṽ)
TC

(k)
0 ε(un)dΩ

Fxy(ṽ) =

∫
∂VFxy

Dxy(ṽ)
T t d∂Vxy

(25)

Note that the computation of k
(k)
xy depends on the type of involved layers, i.e. FGM or

classical layer.

The introduction of the finite element discretization Eq. (16) in the variational Eq. (24)

leads to the linear problem:

Kxy(ṽ)q
f = Rf (ṽ, u

n) (26)

where

• qf is the vector of degree of freedom associated with the F.E. approximations in Ωz.

• Kxy(ṽ) is obtained by summing the elements’ stiffness matrices:

Kxy
e(ṽ) =

∫
Ωk

ze

g(k)(z)
[
BT

z k
(k)
xy (ṽ)Bz

]
dze (27)

• Rf (ṽ, u
n) is obtained by summing the residual’ vectors:

Re
f (ṽ, u

n) = BT
z |z=zFFxy(ṽ)−

∫
Ωk

ze

[
g(k)(z) BT

z σxy
(k)(ṽ, un)

]
dze (28)



4. Numerical results

In the numerical examples, an eight-node quadrilateral FE based on the classical Serendip-

ity interpolation functions is used for the unknowns depending on the in-plane coordinates.

For the unknowns depending on the z-coordinate, the displacement is described by a fourth-

order interpolation as it is justified in [39]. A Gaussian numerical integration with 3 × 3

points is used to evaluate the elementary matrices. As far as the integration with respect to

the transverse coordinate is concerned, 5 integrations points are chosen in each numerical

layer. The present approach, denoted VS-LD4, is compared with both reference solutions

and other models available in open literature.

Hereafter, two classical numerical examples given by [20] are addressed to assess the

accuracy of the present method. A one-layered plate and a sandwich structure are consid-

ered with different slenderness ratios and values of volume fraction exponent. Moreover,

a third example from [41] is studied involving laminates with both FGM and orthotropic

layers. Unless otherwise mentioned, the fourth-order layerwise model LD4, referring to the

systematic work of Carrera (”Carrera’s Unified Formulation” (CUF)) will be considered as

the reference solution. This approach is based on a displacement formulation, and each

displacement component is expanded until the fourth-order. 12NC + 3 unknown functions

are used in this kinematic.

Note that only one couple is built for each test due to the type of load and boundary

conditions.

4.1. one-layered FGM plate

In this section, one-layered FGM plate is considered with different slenderness ratios.

The data is given as follows:

geometry: square FGM plate with length-to-thickness ratio S = a/h = 4, 10

boundary conditions: simply-supported plate subjected to a bi-sinusoidal pressure: p(x, y) =

p0 sin(
πx
a
) sin(πy

b
)



material properties: elastic properties varying along the thickness direction z by a polyno-

mial law, as proposed by Zenkour [6]; The plate is made of aluminum on the bottom

and alumina on the top, and the following functional relationship is considered for

E(z):

E(z) = Em + (Ec − Em)

(
2z + h

2h

)k

where Em = 70 GPa, Ec = 380 GPa are the elastic modulus of the aluminium and

alumina, respectively. k is the volume fraction exponent (k > 0). ν = 0.3 is considered

as constant.

mesh: Nx = Ny = 32 where Nx and Ny are the number of elements along the x and y

directions, respectively.

number of dofs: Ndofxy = 3.(3.Nx.Ny + 2(Nx +Ny) + 1) and Ndofz = 12.Nz + 3 are the

number of dofs of the two problems associated with vij and f i
j respectively. Nz is the

number of numerical layers. So, the total number of dofs is Ndofxy +Ndofz.

results displacements and stresses are made non-dimensional according to

ū(z) = u1(0, b/2, z)
100 Ec h

3

p0 a4
; w̄(z) = u3(a/2, b/2, z)

10 Ec h
3

p0 a4
;

σ̄11(z) = σ11(a/2, b/2, z)
h

a p0
; σ̄13(z) = σ13(0, b/2, z)

h

a p0
; σ̄33(z) = σ33(a/2, b/2, z)

4.1.1. Convergence study

A convergence study is carried out for two values of k corresponding to two different 

distributions of properties through the thickness. In-plane and out-of-plane mesh refinements 

are considered independently. First, Tab. 1 shows the convergence of the displacements and 

stresses with a fixed value of Nz = 4. Classically, the convergence rate of the displacement 

is fast. Only Nx = Ny = 4 is sufficient. For stresses, 32 elements are needed to achieve 

convergence. We also notice that the in-plane mesh has to be rather fine so that the boundary 

conditions on the transverse normal stress be fulfilled and it seems to be more difficult for 

k = 10.

[Table 1 about here.]



Considering a mesh with Nx = Ny = 32 elements, the influence of the numerical layers 

is addressed in Tab. 2. For the displacements, the convergence rate is high as above. For 

the stresses, the influence of the value of k on the convergence rate is more pronounced. 

For k = 10, a higher Young modulus gradient through the thickness occurs and 8 numerical 

layers are needed. For k = 1, only 2 are sufficient. The transverse normal stress is the most 

sensitive value to the mesh.

[Table 2 about here.]

For further illustration, the distributions of σ̄13 and σ̄33 through the thickness are given 

in Fig. 2 for k = 10. It can be inferred from this figure that one numerical layer is insufficient 

to achieve accurate results. The boundary conditions are satisfied with at least 4 numerical 

layers.

[Figure 2 about here.]

4.1.2. Piecewise constant Young Modulus: Convergence study

As in [28] and [30], the FGM plate is modelized using a piecewise constant Young mod-

ulus. The influence of the number of numerical layers is studied hereafter. E is constant 

in each numerical layer, the value is taken at the middle of the layer. This type of compu-

tations can be performed in a commercial software considering numerous materials. Here, 

the PGD framework is advantageous as the computational cost is reduced even using high 

number of layers, as only 1D problems are involved (see [39]). To illustrate that, Tab. 3 gives 

the comparison between the present method (VS-LD4) vs the fourth-order LW expansion 

approach (LD4) in terms of the number of unkowns. The gain becomes very high when the 

number of layers increases. Thus, it is interesting to investigate this issue with the present 

numerical tool. For that, the error with respect to the mesh refinement is given in a log-log 

curve in Fig. 3 for both displacements and stresses. The convergence rate is the same for all 

the quantities excepted for the in-plane stress (divided by two). For this latter, numerical 

layers imply discontinuities between each element in the thickness direction, so high number



of numerical layers is required to circumvent this disadvantage. An illustration is shown in 

Fig. 4. It can be also noted that oscillations occurs even with Nz = 64 numerical layers.

[Table 3 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

4.1.3. Different configurations for the one-layer test case

Based on the previous convergence studies, the subsequent computations are performed 
using a 32×32 mesh with 8 numerical layers. Note that the reference solution (LD4) involves 

also 8 numerical layers.

Two slenderness ratios (thick and semi-thick configurations) with two values of k are consid-

ered. Results are summarized in Tab. 4 and Tab. 5. Results are in excellent agreement with 

the LD4 model for both displacements and stresses, regardless the values of S and k. The  

error rate is less than 0.1%. As the LD4 model gives quasi-3D results, the present results 

are very satisfactory.

[Table 4 about here.]

[Table 5 about here.]

For further comparison, results of the present model are compared with other models 

(see Tab. 6) from open literature for different values of the volume fraction exponent k. 

The results are summarized in Tab. 7. The reference solution, denoted Q3D, is issued from 

[28]. For all models, the accuracy of the displacements is excellent. Nevertheless, when 

k increases, the HSDT model drives to an error rate of more than 8% for the transverse 

shear stress. Layerwise type models are required to compute accurate transverse stresses 

for all cases. Moreover, in [16], the authors have highlighted the importance to take into 

account the transverse stretching in the model. This phenomenon is included in the present 

approach.



[Table 6 about here.]

[Table 7 about here.]

The distributions of the in-plane and transverse shear stress through the thickness are

also provided in Fig. 5 for k = 1 and k = 10. Results issued from the LD4 model are

not given for clarity reason because the agreement with the present model is excellent. The

satisfaction of the free boundary conditions is clear. We also notice the influence of the

volume fraction exponent on the in-plane stress. A high stress gradient occurs on the top of

the plate when k increases.

For this test case, the number of dofs of the LD4 model (316899 dofs) is 33 times greater

than the VS-LD4 model.

[Figure 5 about here.]

4.2. Sandwich plate

In this section, a sandwich plate is considered. The test case is described as follows:

geometry: square sandwich plate (a = b = 1 m) with length-to-thickness ratio S = 4, 20,

constituted of three layers, the thickness of the faces and the core is hf = 0.1h and

hc = 0.8h, respectively.

boundary conditions: simply-supported plate on all sides subjected to a bi-sinusoidal

pressure p(x, y) = p0 sin
πx

a
sin

πy

b

material properties: The two external faces are in aluminium at the bottom and in alu-

mina at the top.

bottom face sheets: isotropic material with E = 70 GPa, ν = 0.3 (aluminium)

top face sheets: isotropic material with E = 380 GPa, ν = 0.3 (alumina)

Core : FGM as in Section 4.1

mesh: Nx = Ny = 32



number of dofs: Ndofxy = 9603 and Ndofz = 12.Nz + 3 = 111

number of dofs for LD4: NLW = 3.(4.Nz + 1).(3.Nx.Ny + 2(Nx +Ny) + 1) = 355311

results: non-dimensional results as in Section 4.1

First of all, the importance of the numerical layers is highlighted to compute the trans-

verse stresses. As illustrated in Fig. 6, a high discontinuity occurs at the interface between

the core and the upper face when using one numerical layer per physical layer. It can be

circumvented by introducing three numerical layers.

In the subsequent example, the results are given following this recommandation.

[Figure 6 about here.]

Different slenderness ratios and values of k are considered to assess the accuracy of the

method. The results are summarized in Tab. 8. For both thin and thick cases, whatever

the values of the volume fraction exponent, the results are in excellent agreement with the

reference solution. The distribution of the in-plane and transverse shear stresses are also

given in Fig. 7 for k = 1 and k = 10. The complex distribution of σ̄11 through the thickness

is well represented. The traction free condition is fulfilled on the top and bottom surfaces.

[Table 8 about here.]

[Figure 7 about here.]

4.3. Multilayered FGM plate

In this section, the static behavior of a multilayered FGM plate is studied. The test case

given in [41] is such as

geometry: square sandwich plate (a = b = 1 m) with length-to-thickness ratio S = 5,

constituted of three layers [FGM/0◦/FGM ], the thickness of the 3 layers are the

same.



boundary conditions: simply-supported plate on all sides subjected to a bi-sinusoidal

pressure p(x, y) = p0 sin
πx

a
sin

πy

b

material properties:
EL = 25 GPa , ET = 1 GPa , GLT = 0.2 GPa ,

GTT = 0.5 GPa , νLT = νTT = 0.25
where L refers

to the fiber direction, T refers to the transverse direction.

The FGM material is such that :

g(1)(z) = exp(kexp
z+h/6
−h/3

) for −h/2 ≤ z ≤ −h/6

g(3)(z) = exp(kexp
z−h/6
h/3

) for h/6 ≤ z ≤ h/2

with the material-property gradient index: kexp = 5

mesh: Nx = Ny = 32

results: The results are made nondimensional using:

ū = u1(0, b/2, z)
ET

hq0S3
, σ̄αα =

σαα(a/2, b/2, z)

q0S2

σ̄13 =
σ13(0, b/2, z)

q0S
, σ̄33 =

σ33(a/2, b/2, z)

q0

reference values exact elasticity results are given in [41] and obtained from [42].

This example seems to be a severe test case. The results will be compared with two Third-

order Shear Deformation Theories with a displacement-based (denoted TSDT-Wu) and a 

RMVT-based (denoted RMVT-Wu) approach available in [41]. Note that the transverse 

normal strain is assumed to be nil in these works. For the present approach, three numerical 

layers per physical layer is required to improve the accuracy of the transverse shear and 

normal stresses. The in-plane displacement and stress, and the transverse shear / normal 

stresses are shown in Fig. 8 and Fig. 9. It can be inferred from these figures that the 

VS-LD4 method is in excellent agreement with the exact solution. The RMVT approach is 

not sufficient to recover accurate results. Indeed, as previously observed in open literature, 

the influence of the stretching effect is of major importance.

[Figure 8 about here.]

[Figure 9 about here.]



5. Conclusion

In this article, an approach based on a variable separation method has been extended

to model FGM plates. The results are assessed with various representative benchmarks

by comparing with both reference solutions and results issued from other theories. It can

be concluded that the present approach drives to very accurate results regardless of the

type of configurations with one-layered FGM, sandwich or mixed classical/FGM layers. It

has also been shown that numerical layers are needed to compute the transverse shear and

normal stresses with accuracy. Another possibility of the method is illustrated through the

consideration of piecewise constant mechanical properties to model such structures. The

advantage of the method in terms of computational cost comparing with Layerwise or 3D

model is highlighted.
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k Nx = Ny ū(−h/4) w̄(0) σ̄11(h/3) σ̄33(h/2) σ̄13(h/6)
1 0.5790 0.4478 1.2655 2.3411 0.8612
2 0.6461 0.5798 1.5361 1.6133 0.4561
4 0.6438 0.5870 1.5256 1.2594 0.3123

1 8 0.6436 0.5875 1.5121 1.0753 0.2672
16 0.6436 0.5875 1.5077 1.0196 0.2550
32 0.6436 0.5875 1.5066 1.0049 0.2519
64 0.6436 0.5875 1.5063 1.0012 0.2511
1 1.0066 0.8069 0.8090 4.1083 0.5376
2 1.0874 0.9967 0.9205 2.2401 0.3270
4 1.0844 1.0067 0.9069 1.4554 0.2531

10 8 1.0842 1.0074 0.8983 1.1313 0.2313
16 1.0842 1.0074 0.8957 1.0381 0.2256
32 1.0842 1.0074 0.8950 1.0140 0.2241
64 1.0842 1.0074 0.8948 1.0079 0.2238

Table 1: one-layered FGM plate - polynomial law - b = a - S = 10 - Nz = 4



k Nz ū(−h/4) w̄(0) σ̄11(h/3) σ̄33(h/2) σ̄13(h/6)
1 0.6435 0.5875 1.5068 0.9892 0.2520

1 2 0.6436 0.5875 1.5066 1.0049 0.2519
4 0.6436 0.5875 1.5066 1.0049 0.2519
8 0.6436 0.5875 1.5066 1.0049 0.2519
1 1.0848 1.0083 0.8977 0.6395 0.2165

10 2 1.0842 1.0074 0.8946 0.8643 0.2252
4 1.0842 1.0074 0.8950 1.0140 0.2241
8 1.0842 1.0074 0.8950 1.0092 0.2242

Table 2: one-layered FGM plate - polynomial law - b = a - S = 10 - Nx = Ny = 32



Nz 4 16 64 128
Ndof VS-LD4 9654 9798 10374 11142

Ndof 4th order LW 163251 624195 2467971 4926339
Ndof 4th order LW / Ndof VS-LD4 17 64 238 442

Table 3: Comparison in terms of number of dofs between the present approach and the LW approach with
a fourth-order expansion



S Model ū(−h/4) v̄(−h/6) w̄(0) σ̄11(h/3) σ̄33(h/2) σ̄13(h/6) σ̄23(h/6)
VS-LD4 1.5967 1.2584 0.7172 0.6218 1.0009 0.2517 0.2517

4 LD4 1.5967 1.2584 0.7172 0.6218 1.0004 0.2517 0.2517
Err 0.00 0.00 0.00 0.00 0.04 0.00 0.00

VS-LD4 0.6436 0.4982 0.5875 1.5066 1.0049 0.2519 0.2519
10 LD4 0.6436 0.4982 0.5875 1.5066 1.0007 0.2519 0.2519

Err 0.00 0.00 0.00 0.00 0.43 0.00 0.00

Table 4: one-layered FGM plate - polynomial law - b = a - Nx = Ny = 32 - k = 1



S Model ū(−h/4) v̄(−h/6) w̄(0) σ̄11(h/3) σ̄33(h/2) σ̄13(h/6) σ̄23(h/6)
VS-LD4 2.6857 2.1058 1.3756 0.3651 1.0072 0.2218 0.2218

4 LD4 2.6857 2.1058 1.3756 0.3651 1.0064 0.2218 0.2218
Err 0.00 0.00 0.00 0.00 0.08 0.00 0.00

VS-LD4 1.0842 0.8405 1.0074 0.8950 1.0140 0.2241 0.2241
10 LD4 1.0842 0.8405 1.0074 0.8950 1.0066 0.2241 0.2241

Err 0.00 0.00 0.00 0.00 0.73 0.00 0.00

Table 5: one-layered FGM plate - polynomial law - b = a - Nx = Ny = 32 - k = 10



Zenkour06 [20] it refers to Generalized shear deformation theory. An ESL model including a sinus
function with 5 unknowns is used. The transverse displacement is constant through
the thickness. It satisfies the zero tangential traction boundary conditions on the
surfaces of the plate. A Navier type solution is developed.

Mantari12 [40] a High-order Shear Deformation Theory (HSDT) model is used with 5 generalized
unknowns (ESL model). The tangential stress-free boundary conditions on the plate
surfaces is satisfied. A Navier-type solution is carried out.

Table 6: models available in open literature



k Model ū(−h/4) v̄(−h/6) w̄(0) σ̄11(h/3) σ̄33(h/2) σ̄13(h/6) σ̄23(h/6)
VS-LD4 0.6436 0.4982 0.5875 1.5066 1.0049 0.2519 0.2519

Err VS-LD4 - - 0.01 0.02 0.49 0.36 0.36
LD4 0.6436 0.4982 0.5875 1.5066 1.0007 0.2519 0.2519

Err-LD4 - - 0.01 0.02 0.07 0.36 0.36
1 Zenkour06 - - 0.5889 1.4894 1.0000 0.2622 0.2622

Err-Zenkour06 - - 0.24 1.12 0.00 4.46 4.46
Mantari12 - - 0.5880 1.4888 1.0000 0.2566 0.2566

Err-Mantari12 - - 0.09 1.16 0.00 2.23 2.23
Q3D - - 0.5875 1.5062 1.0000 0.2510 0.2510

VS-LD4 1.0541 0.8418 0.8823 1.1945 1.0071 0.2370 0.2370
Err VS-LD4 - - 0.00 0.33 0.71 0.32 0.32

LD4 1.0541 0.8418 0.8823 1.1945 1.0013 0.2370 0.2370
Err LD4 - - 0.00 0.33 0.13 0.33 0.33

4 Zenkour06 - - 0.8819 1.1783 1.0000 0.2580 0.2580
Err-Zenkour06 - - 0.05 1.69 0.00 9.23 9.23
Mantari12 - - 0.8814 1.1755 1.0000 0.2623 0.2623

Err-Mantari12 - - 0.10 1.92 0.00 11.05 11.05
Q3D - - 0.8823 1.1985 1.0000 0.2362 0.2362

VS-LD4 1.0842 0.8405 1.0074 0.8950 1.0140 0.2241 0.2241
Err VS-LD4 - - 0.00 0.66 1.40 0.19 0.19

LD4 1.0842 0.8405 1.0074 0.8950 1.0066 0.2241 0.2241
10 Err-LD4 - - 0.00 0.66 0.66 0.19 0.19

Zenkour06 [20] - - 1.0089 0.8775 1.0000 0.2041 0.2041
Err-Zenkour06 - - 0.15 2.60 0.00 8.76 8.76

Q3D - - 1.0074 0.9009 1.0000 0.2237 0.2237

Table 7: one-layered FGM plate - polynomial law - b = a - Nx = Ny = 32 - S = 10



S k Model ū(−h/4) v̄(−h/6) w̄(0) σ̄11(h/3) σ̄33(h/2) σ̄13(h/6) σ̄23(h/6)
VS-LD4 1.8208 1.4565 0.7629 0.6532 1.0008 0.2615 0.2615

1 LD4 1.8208 1.4565 0.7629 0.6532 1.0001 0.2615 0.2615
Err 0.00 0.00 0.00 0.00 0.08 0.00 0.00

VS-LD4 2.5596 2.1328 1.0934 0.5033 1.0010 0.2397 0.2397
4 4 LD4 2.5596 2.1328 1.0934 0.5033 1.0001 0.2397 0.2397

Err 0.00 0.00 0.00 0.00 0.09 0.00 0.00
VS-LD4 2.6353 2.1418 1.2239 0.3559 1.0010 0.2276 0.2276

10 LD4 2.6353 2.1418 1.2239 0.3559 1.0001 0.2276 0.2276
Err 0.00 0.00 0.00 0.00 0.09 0.00 0.00

VS-LD4 0.3675 0.2882 0.6134 3.1619 1.0200 0.2648 0.2648
1 LD4 0.3675 0.2882 0.6134 3.1618 1.0070 0.2649 0.2649

Err 0.00 0.00 0.00 0.00 1. 0.01 0.01
VS-LD4 0.5263 0.4249 0.7922 2.5531 1.0226 0.2425 0.2425

20 4 LD4 0.5263 0.4249 0.7922 2.5530 1.0090 0.2426 0.2426
Err 0.00 0.00 0.00 0.00 1. 0.01 0.01

VS-LD4 0.5367 0.4313 0.8242 1.9058 1.0239 0.2324 0.2324
10 LD4 0.5367 0.4313 0.8242 1.9058 1.0095 0.2325 0.2325

Err 0.00 0.00 0.00 0.00 1. 0.01 0.01

Table 8: sandwich FGM plate - polynomial law - b = a - Nx = Ny = 32 - S = 4/20




