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1. Introduction

Recently, it should be noted an increasing interest towards high‐
performance structures involving multifunctionality capabilites, as it
has been pointed out in [1]. Not only structural but also non‐
structural functions represent the key issue in the develepment of such
smart structural components. Electrical and thermal conductivity,
sensing and actuation, energy harvesting and storage, self‐healing,
electromagnetic interference shielding, recyclability or biodegradabil-
ity are some of the most promising multifunctionality capabilities [2].
An overview on the topics of smart structures can be found in [3,4]. As
they will be involved in the present work, piezoelectric materials per-
mit to convert mechanical and electrical energy at frequency ranges.
Among others, structural health monitoring, active vibration damping,
rapid shape adaptation or energy harvesting [5] are only some feasible
applications of such smart piezoelectric components. Due to the com-
plex manufacturing of such structural devices, a reliable numerical
analysis tool is necessary to capture all the relevant phenomena that
guide the design process. Some examples of recent numerical studies
regarding the electro‐mechanical analysis of piezoelectric energy har-
vesters are shown in [6–8]. Furthermore, if optimization processes and
runtime control algorithms are addressed, the numerical simulation
tool should be as robust and efficient as possible.
Various mathematical models developed for structures containing
piezoelectric sensors and actuators can be classified into two broad
categories including induced strain models and coupled electrome-
chanical models. An overview on the modeling of piezoelectric struc-
tures is given in [4,9–12]. On the one hand, the induced strain
models use approximate theories in order to incorporate external
forces associated with the piezoelectric actuators. The electric poten-
tial is neglected as a state variable in the formulation; therefore these
models cannot capture the coupled mechanical and electrical
responses and are only limited to predict the actuator behavior of
piezoelectric materials ([13–16]). On the other hand, the coupled elec-
tromechanical models provide a more consistent representation of
both the sensor and actuator responses of piezoelectric materials,
incorporating both the displacements and the electric potentials as
the state variables in the formulation. Piezoelectric three‐
dimensional (3D) finite elements have been early proposed in
[17–19]. However, the cost of 3D analysis becomes prohibitive when
piezoelectric layers are thin compared to the structure size.

In order to overcome these restrictions, several theories for lami-
nated structures including piezoelectric elements have been developed
in the literature. A layerwise description is commonly used for the
piezoelectric part (see [20]), therefore, the discussion concerns only
the mechanical approach. The following classification is associated
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• The equivalent single layer approach (ESL): the number of
unknowns is independent of the number of layers, but continuity
of transverse shear and normal stresses is often violated at layer
interfaces. This approach is called ”hybrid” or ”mixed” in the liter-
ature. We can distinguish classical laminate theory (CLT), first‐
order shear deformation theory FSDT [21–23] and higher‐order
theories. In the latter, the third‐order shear deformation theory
has been carried out in [24–27]. Other types of functions can be
also considered as in [28] (exponential function). See also a refined
Reissner–Mindlin approach taking into account the stretching
effect [12].

• The layerwise approach (LW): the number of DOFs depends on the
number of layers. This theory aims at overcoming the ESL short-
coming of allowing discontinuity of out‐of‐plane stresses on the
interface layers. See for instance [29,30] for beams, [31–35] for
plates, and [36] for shells. Note that an extensive assessment has
been provided by Saravanos and Heyligher [10].

In this framework, refined models have been developed in order to
improve the accuracy of ESL models while avoiding the computational
burden of the LW approach. Starting from a refined layerwise descrip-
tion, some physical considerations can be introduced. Then, after some
algebraic transformations, the number of unknowns becomes indepen-
dent of the number of layers. This type of approach has been carried
out in [37]. The resulting model can be classified as a zig‐zag one
(see the historical review of [38]). In the framework of electromechan-
ical problems, Oh and Cho [39] have extended the third order zig‐zag
model. Note also the works of Kapuria for beams [40,41] and plates
[42].

Finally, the so‐called advanced models based on PVD or RMVT and
CUF (Carrera Unified Formulation) must be referred here. Different
types of interlaminar continuity can be considered: transverse shear/
normal stresses and/or transverse electric displacement. For the works
related to multilayered piezoelectric structures, readers can refer to
[43,44] for plates and [11] for shells.

A promising alternative approach to reduce the computational cost
in the field of the reduced‐order modeling is based on the separation of
variables [45]. It has been proposed in [46] with a Navier‐type solu-
tion for the modeling of composite plates with a in‐plane/ out‐of‐
plane coordinates separation. Such variable separations have been suc-
cessfully applied to composite structures in static case [47,48]. The
forced vibration problem of composite beams subjected to harmonic
excitation has also been considered previously by the authors of this
study by using the Proper Generalized Decomposition framework
[49]. In the latter reference, the displacements are written under the
form of separated variable representation, i.e. a sum of products of uni-

with the dependence on the number of mechanical degrees of freedom 
(DOFs) with respect to the number of layers:
Fig. 1. The laminated beam with embedded p
dimensional functions of x and z coordinates. The load frequency ω
was introduced into the formulation as another problem variable, in
order to achieve a more robust formulation. The aim of the present
paper is to extend the previously developed method to laminated
and sandwich beams with piezoelectric layers. Therefore, a multi‐
field analysis of advanced composite structures is addressed, especially
dedicated to the consideration of electro‐mechanical coupling. Analo-
gously, herein both displacements and electric potential are written
under the form of a sum of products of x functions, z functions and
load frequency functions. The deduced explicit solution allows us to
avoid numerous classical computations for each discretized value of
the load frequency in the study domain. To achieve that, the approxi-
mation of the 2D beam is based on a quadratic finite element (FE)
approximation for the variation with respect to x and a quadratic
LW description for the variation with respect to z. The electric
unknowns are interpolated with a second‐order expansion. Using the
PGD, each unknown function of x is classically approximated using
one degree of freedom (dof) at the node of the mesh while the LW
unknown functions of z are global for the whole beam. Finally, the
deduced non‐linear problem implies the resolution of three 1D linear
problems alternatively. This process yields to few unknowns involved
in each of these linear problems.

The manuscript is organized as follows. First, the electro‐
mechanical formulation is recalled. Then, the particular assumption
on the displacements and the electric potential is introduced. It leads
to a non‐linear problem to be solved. An iterative process based on a
classical fixed point strategy allows us to obtain the coupling solution.
In this process, three 1D linear problems described in the present
work, have to be solved. The FE discretization is also given. Numerical
evaluations are subsequently presented. A convergence study of the
proposed algorithm is first conducted. Several numerical tests with
wide range of slenderness ratios under various boundary conditions
are considered in order to assess the validity of the method. The results
in terms of modal parameters and frequency response functions are
compared with exact elasticity solution and finite element simulations
from a commercial FE software.

2. Reference problem description

In the present study, a composite beam of length L and thickness h
is considered. The beam consists of NC layers assumed to be orthotro-
pic in the beam axes. In addition, some of the layers are assumed to
present a piezoelectric behavior. The beam is considered in the (x; z)
plane, i.e., in the domain Ω ¼ Ωx �Ωz ¼ 0 ⩽ x ⩽ L½ � � � h

2 ⩽ z ⩽ h
2

� �
.

The x axis is taken along the longitudinal beam axis whereas the z axis
is taken along the thickness direction. The reader can refer to Fig. 1,
where the striped areas represent layers of piezoelectric material.
The main notation used throughout the present formulation is also
given in Table 1.
iezoelectric layers and coordinate system.



Ωx Domain in beam axis direction NC Number of layers
Ωz Domain in thickness direction N Number of total enrichment steps
ω Load frequency qv½ �; qvϕ½ � Vector of dofs associated with the mesh on Ωx

ω Dimensionless load frequency qf
� �

; qfϕ
� �

Vector of dofs associated with the mesh on Ωz

L Length of the beam qg½ �; qgϕ½ � Vector of dofs associated with the mesh on ω

h Thickness of the beam nx Number of elements in the mesh on Ωx

S ¼ L
h Length to thickness ratio nz Number of elements in the mesh on Ωz

nω Number of elements in the mesh on ω

Table 1
List of principal notation.
The governing equations of the piezoelectric problem are given by

r � σ½ � þ b½ � ¼ ρ
@2 u½ �
@t2

ð1aÞ
r � D½ � � q ¼ 0 ð1bÞ
where σ½ � is the stress, u½ �; D½ � are the mechanical and electric displace-
ment respectively, b½ � is the prescribed body load, q is free electric vol-
ume charge and ρ is the density of the material. The two‐dimensional
formulation of the piezoelectric problem can be reduced to

@σ11

@x
þ@σ13

@z
¼ ρ

@2u1
@t2

;
@σ13

@x
þ@σ33

@z
¼ ρ

@2u3
@t2

;
@D1

@x
þ@D3

@z
¼ 0 ð2Þ

where body load and free electric volume charge have been neglected
for simplification purposes.

2.1. Constitutive relation

The constitutive equations with piezoelectric coupling for a layer k
read

σ½ � ¼ Ck
� �

ɛ½ � � �ek½ �> E½ � ð3aÞ

D½ � ¼ �ek½ � ɛ½ � þ �εk½ � E½ � ð3bÞ

where ɛ½ � ¼ ɛ11 ɛ33 γ13½ �> is the strain and E½ � ¼ E1 E3½ �> is the electric
field for the 2D formulation. Assuming plane stress in the xy‐plane
and also vanishing out of plane electric displacement, the reduced con-
stitutive matrices can be computed for each layer k by

Ck
� �¼

C kð Þ
11 C kð Þ

13 0

C kð Þ
13 C kð Þ

33 0

0 0 C kð Þ
55

2
664

3
775�

C kð Þ
12 0 C kð Þ

16

C kð Þ
23 0 C kð Þ

36

0 C kð Þ
45 0

2
664

3
775

C kð Þ
22 0 C kð Þ

26

0 C kð Þ
44 0

C kð Þ
26 0 C kð Þ

66

2
664

3
775

�1
C kð Þ
12 C kð Þ

23 0

0 0 C kð Þ
45

C kð Þ
16 C kð Þ

36 0

2
664

3
775

ð4Þ

�ek½ � ¼ 0 0 e kð Þ
15

e kð Þ
31 e kð Þ

33 0

" #
� 0 0 0

e kð Þ
32 0 0

" # C kð Þ
22 0 C kð Þ

26

0 C kð Þ
44 0

C kð Þ
26 0 C kð Þ

66

2
664

3
775

�1
C kð Þ

12 C kð Þ
23 0

0 0 C kð Þ
45

C kð Þ
16 C kð Þ

36 0

2
664

3
775 ð5Þ

�εk½ � ¼ ε kð Þ
11 0

0 ε kð Þ
33

" #
þ

0 0 0

e kð Þ
32 0 0

" # C kð Þ
22 0 C kð Þ

26

0 C kð Þ
44 0

C kð Þ
26 0 C kð Þ

66

2
6664

3
7775

�1
0 e kð Þ

32

0 0

0 0

2
664

3
775 ð6Þ

being C kð Þ
ij the stiffness coefficients, e kð Þ

ij the piezoelectric constants and

ε kð Þ
ij the permittivity coefficients for the 3D problem.

2.2. New variational formulation

For a single harmonic mechanical excitation Fd½ � ¼ f d½ � � eiωt applied
in @FΩ, the response of a linear solid in absence of body loads and free
electric volume charge is presumed to have the same frequency as the
applied load

u tð Þ½ � ¼ u½ � � eiωt ; ϕ tð Þ ¼ ϕ � eiωt ð7Þ

with u½ � and ϕ containing the displacements and electric potential
amplitudes. For a set of the load frequency within an interval
ωmin;ωmax½ � a new robust variational formulation is proposed herein.
The problem is defined as finding u ωð Þ½ �; ϕ ωð Þð Þ∈U � Φ (space of
admissible generalized displacement) such that

Z
ω

Z
Ω
ɛ δuð Þ½ �> σ½ �dV dω�

Z
ω

Z
@FΩ

δu½ �> f d½ �dSdω ¼
Z
ω

Z
Ω
ω2ρ δu½ �> u½ �dV dω;

ð8aÞZ
ω

Z
Ω

E δϕð Þ½ �> D½ �dV dω ¼ 0; 8 δu½ �; δϕð Þ∈ δU � δΦ ð8bÞ

Using kinematic relations, ɛ½ � ¼ 1=2 r u½ � þ r u½ �>� �
, and Maxwell’s

law to derive the electric field vector from the electric poten-
tial, E½ � ¼ �rϕ, the piezoelectric problem can be reformulated only
in terms of the generalized displacements ( u½ �; ϕ). To complete the
boundary value problem, a prescribed displacement u½ � ¼ ud½ � and elec-
tric potential ϕ ¼ ϕd are imposed on @uΩ and @ϕΩ respectively.

3. Separated representation

In the approach carried out in this study, the unknowns of the prob-
lem, i.e., the displacements u½ � and the electric potential ϕ are built
under the following separated form as

u½ � ¼ ∑
N

i¼1
gi ωð Þ f i zð Þ� � � vi xð Þ� �

; ϕ ¼ ∑
N

i¼1
giϕ ωð Þ f iϕ zð Þviϕ xð Þ ð9Þ

where ‘�’ denotes the Hadamard product. The unknown functions

gi; giϕ
� �

are defined in ωmin;ωmax½ �; f i
� �

; f iϕ
� �

in Ωz and vi½ �; viϕ
� �

in Ωx.

This separated representation is also used to express the virtual dis-
placement δu and the virtual electric potential δϕ used as test functions
in Eq. (8)

δu½ � ¼ δuω½ � þ δuf
� �þ δuv½ � ¼ δg f½ � � v½ � þ g � v½ � � δf½ � þ g � f½ � � δv½ �;

δϕ ¼ δϕω þ δϕf þ δϕv ¼ δgϕ f ϕ vϕ þ gϕ δf ϕ vϕ þ gϕ f ϕ δvϕ
ð10Þ

The resolution process is therefore an iterative procedure where the
unknown functions must be computed for each enrichment step
i ¼ 1;2; . . . ; n; . . . ;N. The solution for iteration n can be expressed by

u½ � ¼ �u½ � þ g V½ � f½ � ¼ �u½ � þ g F½ � v½ �; ϕ ¼ �ϕþ gϕf ϕvϕ ð11Þ

where �u½ �; �ϕð Þ are the displacement and potential solution obtained at
iteration n� 1ð Þ



�u½ � ¼ ∑
n�1

i¼1
ui
� � ¼ ∑

n�1

i¼1
gi Fi� �

vi
� � ¼ ∑

n�1

i¼1
gi Vi� �

f i
� �

; �ϕ ¼ ∑
n�1

i¼1
ϕi ¼ ∑

n�1

i¼1
giϕ f

i
ϕ v

i
ϕ ð12Þ

and

vi
� � ¼ vi1 xð Þ

vi3 xð Þ

2
4

3
5; Vi� � ¼ vi1 xð Þ 0

0 vi3 xð Þ

2
4

3
5;

f i
� � ¼ f i1 zð Þ

f i3 zð Þ

2
4

3
5; Fi� � ¼ f i1 zð Þ 0

0 f i3 zð Þ

2
4

3
5

ð13Þ

Introducing this separated representation in the piezoelectric for-
mulation expressed by Eq. (8), the problem is decomposed into three
pair coupled equations given below

Z
ω

Z
Ω

ɛ δuωð Þ½ �> C½ � ɛ �uþ g F vð Þ½ � � ɛ δuωð Þ½ �> e½ �> E �ϕþ gϕ f ϕ vϕ
� 	� �� 	

dV dω

�
Z
ω

Z
Ω
ω2ρ δuω½ �> �uþ g F v½ �dV dω ¼

Z
ω

Z
@FΩ

δuω½ �> f d½ �dSdω

ð14aÞ

Z
ω

Z
Ω

E δϕωð Þ½ �> e½ � ɛ �uþ g F vð Þ½ � þ E δϕωð Þ½ �> ε½ � E �ϕþ gϕ f ϕ vϕ
� 	� �� 	

dV dω ¼ 0

ð14bÞ

Z
ω

Z
Ω

ɛ δuf
� 	� �> C½ � ɛ �uþ gV fð Þ½ � � ɛ δuf

� 	� �> e½ �> E �ϕþ gϕ f ϕ vϕ
� 	� �� �

dV dω

�
Z
ω

Z
Ω
ω2ρ δuf

� �>
�uþ gV f½ �dV dω¼

Z
ω

Z
@FΩ

δuf
� �> f d½ �dSdω

ð15aÞ

Z
ω

Z
Ω

E δϕf

� 	� �> e½ � ɛ �uþ g V fð Þ½ � þ E δϕf

� 	� �>
ε½ � E �ϕþ gϕ f ϕ vϕ

� 	� �� �
dV dω ¼ 0

ð15bÞ

Z
ω

Z
Ω

ɛ δuvð Þ½ �> C½ � ɛ �uþ g F vð Þ½ � � ɛ δuvð Þ½ �> e½ �> E �ϕþ gϕ f ϕ vϕ
� 	� �� 	

dV dω

�
Z
ω

Z
Ω
ω2ρ δuv½ �> �uþ g F v½ �dV dω ¼

Z
ω

Z
@FΩ

δuv½ �> f d½ �dSdω

ð16aÞ

Z
ω

Z
Ω

E δϕvð Þ½ �> e½ � ɛ �uþ g F vð Þ½ � þ E δϕvð Þ½ �> ε½ � E �ϕþ gϕ f ϕ vϕ
� 	� �� 	

dV dω ¼ 0

ð16bÞ

These three pairs coupled equations define a non‐linear problem. To
solve it, an iterative procedure is followed. The fixed point loop is iter-
ated m times until reaching a fixed solution for each enrichment step n
which composes the final solution. This resolution strategy is explained
in Algorithm 1.
Algorithm 1: Fixed point loop applied to the piezoelectric
problem.

for n ¼ 1 to N do

Initialize g; gϕ
� �0

; f½ �; f ϕ
� � 0ð Þ

and compute v½ �; vϕ
� 	 0ð Þ from Eq.

(16)
for m ¼ 1 to mmax do

Step 1: knowing v½ �; vϕ
� 	 m�1ð Þ

; f½ �; f ϕ
� � m�1ð Þ

, compute

g; gϕ
� � mð Þ

from Eq. (14)

Step 2: knowing v½ �; vϕ
� 	 m�1ð Þ

; g; gϕ
� � mð Þ

, compute

f½ �; f ϕ
� � mð Þ

from Eq. (15)

Step 3: knowing f½ �; f ϕ
� � mð Þ

; g; gϕ
� � mð Þ

, compute v½ �; vϕ
� 	 mð Þ

from Eq. (16)
Check for convergence (break)

end for

Set gn ¼ g mð Þ; f n½ � ¼ f½ � mð Þ; vn½ � ¼ v½ � mð Þ and

gnϕ ¼ g mð Þ
ϕ ; f nϕ ¼ f mð Þ

ϕ ; vnϕ ¼ v mð Þ
ϕ

Set un½ � ¼ un�1
� �þ gn Vn½ � f n½ � and ϕn ¼ ϕn�1 þ gnϕ f

n
ϕ v

n
ϕ

end for

3.1. Step 1: Problem on load frequency domain

In order to simplify the notation, the functions

f½ �; f ϕ
� 	 m�1ð Þ

; v½ �; vϕ
� 	 m�1ð Þ, which are assumed to be known, will be

denoted as ~f ;~f ϕ;~v;~vϕ (and subsequently F
∼
;V
∼
in matrix form) and the

functions g mð Þ; g mð Þ
ϕ to be computed will be denoted as g; gϕ. The strain

and electric fields are defined in matrix notation as

ɛ g F
∼
~v

� �h i
¼ g Σz

~f
� �h i

~Ev

� �
; E gϕ ~f ϕ~vϕ

� �h i
¼ gϕ Σϕ

z
~f ϕ
� �h i

~Evϕ

� �
ð17Þ

with

Σz
~f
� �h i

¼
0 ~f 1 0 0
0 0 ~f 03 0
~f 01 0 0 ~f 3

2
64

3
75; Ev½ � ¼ v1 v01 v3 v

0
3

� �>
;

Σϕ
z

~f ϕ
� �h i

¼ 0 �~f ϕ
�~f 0ϕ 0

" #
; Evϕ

� � ¼ vϕ v0ϕ
h i>

ð18Þ

where the prime (0) stands for the classical derivation. Introducing the
above expression into Eq. (14), the variational problem defined on load
frequency domain readZ

ω

δg kvvω g dω�
Z
ω

δg kvϕω gϕ dω�
Z
ω

δgω2mω g dω

¼
Z
ω

δg f ω dωþ ∑
n�1

i¼1

Z
ω

δgω2μiω �g
i dω�

Z
ω

δg σvv
i

ω �gi dωþ
Z
ω

δg σvϕ
i

ω �giϕ dω

 �

ð19aÞ

�
Z
ω

δgϕ k
ϕv
ω g dω�

Z
ω

δgϕ k
ϕϕ
ω gϕ dω¼ ∑

n�1

i¼1

R
ω δgϕ σ

ϕvi
ω �gi dωþ Rω δgϕ σϕϕi

ω �giϕ dω
h i

ð19bÞ
where the functions with the superscript “i” are referred to the solution
at the previous enrichment steps i ¼ 1;2; . . . ; n� 1ð Þ. The coefficients
integrated in the spatial domain Ω are



kvvω ~f ;~v
� �

¼ RΩ ~Ev

� �> ~Σz
� �>

C½ � ~Σz
� �

~Ev

� �
dV ; kvϕω ~f ;~f ϕ;~v;~vϕ

� �
¼ RΩ ~Ev

� �> ~Σz
� �>

e½ �> ~Σϕ
z

� �
~Evϕ

� �
dV ;

kϕvω ~f ;~f ϕ;~v;~vϕ
� �

¼ RΩ ~Evϕ

� �> ~Σϕ
z

� �>
e½ � ~Σz
� �

~Ev

� �
dV ; kϕϕω ~f ϕ;~vϕ

� �
¼ RΩ ~Evϕ

� �> ~Σϕ
z

� �>
ε½ � ~Σϕ

z

� �
~Evϕ

� �
dV;

σvv
i

ω
~f ;~v;�f i;�vi
� �

¼ RΩ ~Ev

� �> ~Σz
� �>

C½ � �Σi
z

� �
�Ei
v

� �
dV ; σvϕ

i

ω
~f ;~v;�f iϕ;�v

i
ϕ

� �
¼ RΩ ~Ev

� �> ~Σz
� �>

e½ �> �Σϕi

z

h i
�Ei
vϕ

h i
dV;

σϕvi
ω

~f ϕ;~vϕ;�f i;�vi
� �

¼ RΩ ~Evϕ

� �> ~Σϕ
z

� �>
e½ � �Σi

z

� �
�Ei
v

� �
dV ; σϕϕ

i

ω
~f ϕ;~vϕ;�f iϕ;�v

i
ϕ

� �
¼ RΩ ~Evϕ

� �> ~Σϕ
z

� �>
ε½ � �Σϕi

z

h i
�Ei
vϕ

h i
dV;

mω
~f ;~v
� �

¼ RΩ ~v½ �> F
∼h i>

ρ F
∼h i

~v½ �dV ; μiω
~f ;�f i;�vi
� �

¼ RΩ ~v½ �> F
∼h i>

ρ Fi
� �

�vi½ �dV ;

fω ~f ;~v
� �

¼ R
@FΩ

~v½ �> F
∼h i>

f d½ �dS

ð20Þ
Note that for any particular value of the pulsation ω, it is easy to notice
that the Eq. (19) results in

kvvω � ω2mω

� 	
g � kvϕω gϕ ¼ fω þ ∑

n�1

i¼1
. . .½ � ð21aÞ

�kϕvω g � kϕϕω gϕ ¼ ∑
n�1

i¼1
. . .½ � ð21bÞ

These two equations can be combined in order to find an explicit
expression for g such that

kϕϕω kvvω � ω2mω

� 	þ kϕvω kvϕω
� �

g ¼ fω þ ∑
n�1

i¼1
. . .½ � ð22Þ

from which we can derive the value of the natural frequencies, ωn, for
which the resonance is detected

ω2
n ¼

kvvω þ kvϕω
� 	2

=kϕϕω
mω

ð23Þ

3.2. Step 2: Problem on Ωz

At this step, the functions g; gϕ
� 	 mð Þ

; v½ �; vϕ
� 	 m�1ð Þ, assumed to be

known, will be denoted as ~g; ~gϕ;~v;~vϕ and the functions f½ �; f ϕ
� 	 mð Þ to

be computed will be denoted as f ; f ϕ. The strain and electric field
are defined in matrix notation as

ɛ ~g V
∼
f

� �h i
¼ ~g Σx ~vð Þ½ � Ef

� �
; E ~gϕ~vϕ f ϕ

� 	� � ¼ ~gϕ Σϕ
x ~vϕ
� 	� �

Efϕ

h i
; ð24Þ

with

Σx ~vð Þ½ � ¼
~v01 0 0 0
0 0 0 ~v3
0 ~v1 ~v03 0

2
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3
75; Ef
� � ¼ f 1 f

0
1 f 3 f

0
3

� �>
;

Σϕ
x ~vϕ
� 	� � ¼ �~v0ϕ 0

0 �~vϕ


 �
; Efϕ

h i
¼ f ϕ f

0
ϕ

h i> ð25Þ

Introducing the above expression into Eq. (15), the variational
problem defined on Ωz is

γω

Z
Ωz

δEf
� �> kffx

h i
Ef
� �

dz � θω

Z
Ωz

δEf
� �> kfϕx

h i
Efϕ

h i
dz � αω

Z
Ωz

δf½ �> mx½ � f½ �dz

¼ βω

Z
@FΩz

δf½ �> f x½ �dz þ ∑
n�1

i¼1
αi
ω

Z
Ωz

δf½ �> μix
� � �f i

h i
dz � γiω

Z
Ωz

δEf
� �>

σff
i

x

h i
�Ei
f

h i
dz




þ θgϕ
i

ω

Z
Ωz

δEf
� �>

σfϕi

x

h i
�Ei
fϕ

h i
dz
�

ð26aÞ
� θω

Z
Ωz

δEfϕ

h i>
kϕfx
h i

Ef
� �

dz � ηω

Z
Ωz

δEfϕ

h i>
kϕϕx
� �

Efϕ

h i
dz

¼ ∑
n�1

i¼1
θϕg

i

ω

Z
Ωz

δEfϕ

h i>
σϕf

i

x

h i
�Ei
f

h i
dz þ ηiω

Z
Ωz

δEfϕ

h i>
σϕϕ

i

x

h i
�Ei
fϕ

h i
dz


 �
ð26bÞ

where the coefficients integrated in the Ωx domain are

kffx ~vð Þ
h i

¼ RΩx
~Σx
� �>

C½ � ~Σx
� �

dx; kfϕx ~v;~vϕ
� 	h i

¼ RΩx
~Σx
� �>

e½ �> ~Σϕ
x

� �
dx;

kϕfx ~v;~vϕ
� 	h i

¼ RΩx
~Σϕ
x

� �>
e½ � ~Σx
� �

dx; kϕϕx ~vϕ
� 	� � ¼ RΩx

~Σϕ
x

� �>
ε½ � ~Σϕ

x

� �
dx;

σff
i

x ~v;�við Þ
h i

¼ RΩx
~Σx
� �>

C½ � �Σi
x

� �
dx; σfϕ

i

x ~v;�viϕ
� �h i

¼ RΩx
~Σx
� �>

e½ �> �Σϕi

x

h i
dx;

σϕf
i

x ~vϕ;�vi
� 	h i

¼ RΩx
~Σϕ
x

� �>
e½ � �Σi

x

� �
dx; σϕϕi

x ~vϕ;�viϕ
� �h i

¼ RΩx
~Σϕ
x

� �>
ε½ � �Σϕi

x

h i
dx;

mx ~vð Þ½ � ¼ RΩx
V
∼h i>

ρ V
∼h i

dx; μix ~v;�við Þ� � ¼ RΩx
V
∼h i>

ρ Vi
� �

dx;

f x ~vð Þ½ � ¼ R
@FΩx

V
∼h i>

f d½ �dx ð27Þ

and the coefficients integrated in the load frequency domain are

γω ~gð Þ ¼ Rω ~g2 dω; γiω ~g; �gið Þ ¼ Rω ~g �gi dω;
ηω ~g; ~gϕ
� 	 ¼ Rω ~g~gϕ dω; ηω ~gϕ

� 	 ¼ Rω ~g2ϕ dω;
αω ~gð Þ ¼ Rω ω2~g2 dω; αi

ω ~g; �gið Þ ¼ Rω ω2~g �gi dω;

βω ~gð Þ ¼ Rω ~g dω; θωð~g; ~gϕÞ ¼
R
ω
~g~gϕ dω

θgϕ
i

ω ð~g; �giϕÞ ¼
R
ω
~g �giϕ dω; θϕg

i

ω ð~gϕ; �giÞ ¼
R
ω
~gϕ �gi dω

ð28Þ
3.3. Step 3: Problem on Ωx

At this step, the functions g; gϕ
� 	 mð Þ

; f½ �; f ϕ
� 	 mð Þ, which are assumed

to be known, will be denoted as ~g; ~gϕ;~f ;~f ϕ and the functions v½ �; vϕ
� 	 mð Þ

to be computed will be denoted as v; vϕ. The expression of the strain
and electric field are

ɛ ~g F
∼
v

� �h i
¼ ~g Σz

~f
� �h i

Ev½ �; E ~gϕ ~f ϕ vϕ
� �h i

¼ ~gϕ Σϕ
z

~f ϕ
� �h i

Evϕ

� � ð29Þ

Introducing the above expression into Eq. (16), the variational
problem defined on Ωx read

γω

Z
Ωx

δEv½ �> kvvz
� �

Ev½ �dx� θω

Z
Ωx

δEv½ �> kvϕz
� �

Evϕ

� �
dx� αω

Z
Ωx

δv½ �> mz½ � v½ �dx

¼ βω

Z
@FΩx

δv½ �> f z½ �dxþ ∑
n�1

i¼1
αi
ω

Z
Ωx

δv½ �> μiz
� �

�vi
� �

dx



� γiω

Z
Ωx

δEv½ �> σvv
i

z

h i
�Ei
v

� �
dxþ θgϕ

i

ω

Z
Ωx

δEv½ �> σvϕ
i

z

h i
�Ei
vϕ

h i
dx
�

ð30aÞ



� θω

Z
Ωx

δEvϕ

� �> kϕvz
� �

Ev½ �x � ηω

Z
Ωx

δEvϕ

� �> kϕϕz
� �

Evϕ

� �
dx

¼ ∑
n�1

i¼1
θϕg

i

ω

Z
Ωx

δEvϕ

� �>
σϕvi
z

h i
�Ei
v

� �
dx þ ηiω

Z
Ωx

δEvϕ

� �>
σϕϕ

i

z

h i
�Ei
vϕ

h i
dx


 �
ð30bÞ

where the coefficients integrated in the Ωz domain are

kvvz ~f
� �h i

¼ RΩz
~Σz
� �>

C½ � ~Σz
� �

dz; kvϕz ~f ;~f ϕ
� �h i

¼ RΩz
~Σz
� �>

e½ �> ~Σϕ
z

� �
dz;

kϕvz ~f ;~f ϕ
� �h i

¼ RΩz
~Σϕ
z

� �>
e½ � ~Σz
� �

dz; kϕϕz ~f ϕ
� �h i

¼ RΩz
~Σϕ
z

� �>
ε½ � ~Σϕ

z

� �
dz;

σvv
i

z
~f ;�f i
� �h i

¼ RΩz
~Σz
� �>

C½ � �Σi
z

� �
dz; σvϕi

z
~f ;�f iϕ
� �h i

¼ RΩz
~Σz
� �>

e½ �> �Σϕi

z

h i
dz;

σϕvi
z

~f ϕ;�f i
� �h i

¼ RΩz
~Σϕ
z

� �>
e½ � �Σi

z

� �
dz; σϕϕi

z
~f ϕ;�f iϕ
� �h i

¼ RΩz
~Σϕ
z

� �>
ε½ � �Σϕi

z

h i
dz;

mz
~f
� �h i

¼ RΩz
F
∼h i>

ρ F
∼h i

dz; μiz
~f ;�f i
� �h i

¼ RΩz
F
∼h i>

ρ Fi
� �

dz;

f z ~f
� �h i

¼ R
@FΩz

F
∼h i>

f d½ �dz
ð31Þ

and the ones integrated in the load frequency domain are expressed by
Eq. 28.
4. FE discretization

To numerically compute the solution, a discrete representation of
the unknown functions is addressed. For the load frequency domain,
a uniform discretization of the interval ωmin;ωmax½ � is set up. The ele-
mentary vectors of degrees of freedoms (dofs) associated with the
mesh in ω are qgh

� �
; qgϕh
� �

. On the other hand, a classical finite element
approximation is used in domains Ωx and Ωz. The elementary vectors
of dofs associated with the mesh in Ωx and Ωz are qve

� �
; qvϕe
� �

and

qfk
h i

; qfϕk
h i

respectively. Under these assumptions, unknown functions

and derived fields are approximated as follows

ve½ � ¼ Nx½ � qve
� �

; Ee
v

� �¼ Bx½ � qve
� �

; vϕe

� �¼ Nϕx
� �

qvϕe
� �

; Ee
vϕ

h i
¼ Bϕx
� �

qvϕe
� �

ð32Þ
f k½ � ¼ Nz½ � qfk

h i
; Ek

f

h i
¼ Bz½ � qfk

h i
; f ϕk

h i
¼ Nϕz
� �

qfϕk
h i

; Ek
fϕ

h i
¼ Bϕz
� �

qfϕk
h i
ð33Þ

gh½ � ¼ Nω½ � qgh
� �

; gϕh

h i
¼ Nϕω

� �
qgϕh
� � ð34Þ
Fig. 2. Diagram of the new PGD formulation and comp
where the matrices Nx½ �; Nϕx
� �

; Bx½ � and Bϕx
� �

contain the shape func-
tions and their derivatives for the problem on Ωx and analogously for
the other domains. The total number of elements in
ωmin;ωmax½ � ¼ Snω

h¼1ω
h;Ωx ¼

Snx
e¼1Ω

e
x and Ωz ¼

Snz
k¼1Ω

k
z domains are

denoted as nω; nx and nz, respectively. Note that the interpolation can
be different for each domain and also for the mechanical and electric
unknowns separately. The introduction of the discretization in Eq.
(30b) lead to the electro‐mechanical linear system

Problem on Ωx :

Kvv½ � � Kvvϕ

� �
� Kvvϕ

� �> � Kvϕvϕ

� �
" #

� Mv½ � �0½ �
�0½ � �0½ �


 � !
qv½ �
qvϕ½ �


 �
¼ Fv½ � þ Rf

� �
Rvϕ

� �
" #

ð35Þ
where

• qv½ �; qvϕ½ � are the vector of dofs associated with the finite element
mesh in Ωx for the mechanical and electric unknowns respectively.

• Kvv½ �; Kvvϕ

� �
; Kvϕvϕ

� �
are the stiffness, electro‐mechanical and dielec-

tric matrices obtained by assembling the elementary matrices

Ke
vv

� �
; Ke

vvϕ

h i
; Ke

vϕvϕ

h i
, respectively
aris
Ke
vv ~g;~f
� �h i

¼ ∑
nω

h¼1
γω ~ghð Þ


 � Z
Ωe
x

Bx½ �> ∑
nz

k¼1
kvvz ~f k
� �h i
 �

Bx½ �dx ð36Þ

Ke
vvϕ

~g; ~gϕ;~f ;~f ϕ
� �h i

¼ ∑
nω

h¼1
θω ~gh; ~gϕh

� 	
 � Z
Ωe
x

Bx½ �> ∑
nz

k¼1
kvϕz ~f k;~f ϕk

� �h i
 �
Bϕx
� �

dx

ð37Þ
Ke

vϕvϕ
~gϕ;~f ϕ
� �h i

¼ ∑
nω

h¼1
ηω ~gϕh

� 	
 � Z
Ωe
x

Bϕx
� �> ∑

nz

k¼1
kϕϕz ~f ϕk

� �h i
 �
Bϕx
� �

dx ð38Þ

• Mv½ � is the mass matrix obtained by assembling the elementary
mass matrices Me

v

� �
Me

v ~g;~f
� �h i

¼ ∑
nω

h¼1
αω ~ghð Þ


 � Z
Ωe
x

Nx½ �> ∑
nz

k¼1
mz

~f k
� �h i
 �

Nx½ �dx ð39Þ

• Fv½ � is the load vector obtained by assembling the elementary
load vectors Fe

v

� �
Fe
v ~g;~f
� �h i

¼ ∑
nω

h¼1
βω ~ghð Þ


 � Z
@FΩe

x

Nx½ �> ∑
nz

k¼1
f z ~f k
� �h i
 �

dx ð40Þ

• Rv½ �; Rvϕ

� �
are the equilibrium residuals, obtained by assembling

the elementary residual vectors Re
v

� �
; Re

vϕ

h i
on with the classical 2D layerwise FE approach.



Re
v ~g;~f ; �u; �ϕ
� �h i

¼ ∑
n�1

i¼1
∑
nω

h¼1
αi
ω ~gh; �gih
� 	
 � Z

Ωe
x

Nx½ �> ∑
nz

k¼1
μiz

~f k;�f ik
� �h i
 �

�vi
� �

dx

(

� ∑
nω

h¼1
γiω ~gh; �gih
� 	
 � Z

Ωe
x

Bx½ �> ∑
nz

k¼1
σvvi
z

~f k;�f ik
� �h i
 �

�Ei
v

� �
dx

þ ∑
nω

h¼1
θgϕ

i

ω ~gh; �giϕh

� �
 �Z
Ωe
x

Bx½ �> ∑
nz

k¼1
σvϕ

i

z
~f k;�f iϕk

� �h i
 �
�Ei
vϕ

h i
dx

)
ð41Þ

Re
vϕ

~gϕ;~f ϕ; �u; �ϕ
� �h i

¼ ∑
n�1

i¼1
∑
nω

h¼1
θϕg

i

ω ~gϕh ; �g
i
h

� 	
 � Z
Ωe
x

Bϕx
� �> ∑

nz

k¼1
σϕvi
z

~f ϕk ;
�f ik

� �h i
 �
�Ei
v

� �
dx

(

þ ∑
nω

h¼1
ηiω ~gϕh ; �g

i
ϕh

� �
 � Z
Ωe
x

Bϕx
� �> ∑

nz

k¼1
σϕϕ

i

z
~f ϕk ;

�f iϕk

� �h i
 �
�Ei
vϕ

h i
dx

)
ð42Þ

Analogously, the introduction of the discretization in the Eqs. (26)
and (19) lead to the next electro‐mechanical linear systems

Problem on Ωz :

Kff
� � � Kffϕ

� �
� Kffϕ

� �> � Kfϕfϕ

h i
2
4

3
5� Mf

� �
�0½ �

�0½ � �0½ �

" #0
@

1
A qf

� �
qfϕ
� �
" #

¼
Ff
� �þ Rf

� �
Rfϕ

h i
2
4

3
5
ð43Þ

Problem on ω :

Kgg
� � � Kggϕ

h i
� Kggϕ

h i>
� Kgϕgϕ

h i
2
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3
75� Mg

� �
�0½ �

�0½ � �0½ �

" #0
B@

1
CA qg½ �

qgϕ½ �

 �

¼
Fg
� �þ Rg

� �
Rgϕ

h i
2
4

3
5
ð44Þ

where the components have a similar formulation and interpretation to
that already presented for the problem on Ωx domain. The separated
representation and reduction in the degrees of freedom to which the
PGD leads is depicted in the diagram of Fig. 2.

5. Numerical tests

This section is dedicated to the dynamic analysis of some piezoelectric
composite beams in order to evaluate the proposed methodology. It
should be mentioned that the PGD method has been successfully used
to the harmonic analysis of composite beams [49] but also to solve static
problems of piezoelectric plates [50]. This paper aims to extend the PGD
formulation to the harmonic analysis of piezoelectric composite beams in
the frequency domain. The Frequency Response Functions (FRF) are
Fig. 3. Beam tests
obtained for the first time by using the PGD method for the piezoelectric
problem. In addition, the proposed formulation allows us to identify the
modal parameters, natural frequencies and vibration modes, for both
short circuit and open circuit conditions. In the following numerical test
cases, the proposed approach will be evaluated by first addressing the
eigenfrequencies and eigenmodes and subsequently the FRF.

In these tests, as far as the spatial discretization is concerned, a clas-
sical quadratic finite element approximation is considered for both
domains Ωx and Ωz. A Gaussian numerical integration with three
points is used to evaluate the elementary matrices and also to compute
the integrals in the load frequency domain. The results are compared
with classical finite element solutions and exact elastic solutions or
models available in the literature. The software ANSYS is also employed
to provide reference solutions, considering a bi‐dimensional approach
using the PLANE223 element for piezoelectric layers. This element has
eight nodes with up to five degrees of freedom per node. For the non‐
piezoelectric layers, the higher order (quadratic) element named
PLANE183 is considered.

5.1. Convergence study of the proposed algorithm

The aim of the present section is to assess the performance of the
proposed method to model coupling piezoelectric problems. In addi-
tion, a convergence study to evaluate the effect of the mesh size on
spatial coordinates is addressed. For this purpose, a piezoelectric
monomorph beam studied by Fernandes [51] is considered (see
Fig. 3a). The monomorph beam is analysed assuming cylindrical bend-
ing (plane strain), for which the strains and the electric displacement
in the y direction are considered to be negligible and therefore the col-
umns and vectors in the 3D constitutive matrices associated to the neg-
ligible variables can be directly ignore. Different length to thickness
ratios are tested for both close and open circuit electrical boundary
conditions considering different spatial meshes. The monomorph is
made of PZT‐4 piezoelectric transversely isotropic ceramic. The char-
acteristics of the test are described as follows:

• Geometry: thickness h ¼ 1mm and three length to thickness ratios
S ¼ L=h ¼ 5;10;50.

• Material properties:
C11; C33; C44; C12; C13f g ¼ 139; 115; 25:6; 77:8; 74:3f gGPa,
e15; e31; e33f g ¼ 12:7; �5:2; 15:1f gC=m2,
ɛ11; ɛ33f g ¼ 13:06; 15:51f g � 10�9 F=m; ρ ¼ 7550kg=m3.
configuration.



M. Boundary conditions: the beam is simply supported at its ends: 

u3 ¼ 0 8 z (through the whole thickness). Two sets of electric
boundary conditions are considered:
– A close circuit or short circuit condition (SC), with the potential

forced to remain zero (grounded) at the top and bottom surfaces 
of the monomorph beam.
Table 3
Open circuit (OC) dimensionless natural frequencies of simply support laminated be

S Mode type Exact 3D Present

5 bend 5.534 5.535
bend 13.625 13.609
bend 22.058 21.929
bend 30.709 30.712
bend 39.392 39.311
bend 47.990 48.122
t/c 37.203 37.219
sh – 37.337
sh 58.447 58.450

10 bend 7.443 7.470
bend 22.137 22.138
bend 38.128 38.129
bend 54.502 54.481
bend 71.214 71.225
bend 88.232 88.237
t/c 78.293 78.266
sh – 149.389
sh 177.107 176.418

20 bend 8.370 8.372
bend 29.770 29.770
bend 57.829 57.802
bend 88.550 88.551
bend 120.290 120.181
bend 152.514 152.569
t/c 159.334 159.341
sh – 595.256
sh 627.418 627.449

100 bend 8.754 8.755
bend 34.812 34.802
bend 77.578 77.579
bend 136.121 136.094
bend 209.246 209.247
bend 295.585 295.693
t/c 801.586 801.587
sh 14965.634 15057.896

Table 2
Convergence study for the first three natural frequencies of the monomorph beam. T

SC frequency error (%)

S nz f 1 f 2 f 3

5 2 0.07 0.23 0.48
4 0.03 0.07 0.10
6 0.03 0.06 0.08
8 0.03 0.05 0.07
10 0.03 0.05 0.07

2D model [51] 0.48 1.07 1.23
ANSYS 63910.9 219460 416755

10 2 0.02 0.06 0.13
4 0.01 0.02 0.03
6 0.01 0.01 0.03
8 0.00 0.02 0.03

2D model [51] 0.12 0.37 0.64
ANSYS 16797.2 63843.1 133694

50 1 0.01 0.03 0.07
2 0.00 0.00 0.01

2D model [51] 0.01 0.03 0.05
ANSYS 684.116 2730.13 6119.17

8

– An open circuit condition (OC), where the electric potential
remains free everywhere.

In order to evaluate the convergence of the proposed methodology,
a study with regard to the mesh size is carried out. The problem is eval-
uated by considering different meshes, with a number of nz elements
am.

Error (%) CRLT [52] CRLT error (%)

0.0 5.659 2.3
0.1 13.973 2.6
0.6 22.698 2.9
0.0 32.096 4.5
0.2 42.291 7.4
0.3 53.263 11.0
0.0 38.091 2.4
– 37.634 –

0.0 61.708 5.6

0.4 7.525 1.1
0.0 22.637 2.3
0.0 39.108 2.6
0.0 55.896 2.6
0.0 73.072 2.6
0.0 90.807 2.9
0.0 78.846 0.7
– 150.533 –

0.4 178.656 0.9

0.0 8.400 0.4
0.0 30.103 1.1
0.0 58.874 1.8
0.0 90.553 2.3
0.1 123.292 2.5
0.0 156.456 2.6
0.0 159.641 0.2
– 602.129 –

0.0 631.793 0.7

0.0 8.755 0.0
0.0 34.834 0.1
0.0 77.688 0.1
0.0 136.459 0.2
0.0 210.048 0.4
0.0 297.194 0.5
0.0 801.651 0.0
0.6 15083.435 0.8

he reference ANSYS values are in Hz.

OC frequency error (%)

cum. f 1 f 2 f 3 cum.

0.79 1.56 0.08 0.27 1.92
0.20 0.21 0.06 0.03 0.30
0.16 0.01 0.06 0.03 0.11
0.16 0.01 0.06 0.05 0.13
0.15 0.02 0.07 0.03 0.12

2.77 0.28 0.76 1.10 2.15
- 64191.7 221862 422847 -

0.21 0.01 0.04 0.10 0.15
0.05 0.00 0.01 0.01 0.01
0.05 0.05 0.01 0.01 0.07
0.05 0.00 0.01 0.01 0.02

1.13 0.08 0.27 0.51 0.87
- 16823.8 64185.4 134967 –

0.11 0.01 0.03 0.07 0.11
0.01 0.00 0.00 0.00 0.00

0.09 0.01 0.02 0.04 0.08
- 684.169 2730.95 6123.36 –



along the thickness. In the longitudinal domain, the size of the ele-
ments is the same as in the thickness direction for each analysis. The 
numerical values of the natural frequencies obtained with the PGD 
method by means of the Eq. (23) are compared with results computed 
with the commercial software ANSYS using a very refined mesh obtained 
after a convergence study and the two‐dimensional model solutions 
from [51].

Table 2 presents the analysis of the first three bending natural fre-
quencies for the very thick to very thin beams for both open and close 
circuit conditions. The values of the natural frequencies computed 
with ANSYS are taken as reference to calculate the relative errors of 
the solution obtained with the proposed algorithm.

It can be inferred from Table 2 that the convergence rate is rather 
high. In most cases it is only necessary to consider two numerical lay-
ers to obtain a value with a relative error below 1%. The PGD results 
show an excellent agreement with reference values, even closer to 
those obtained by the Fernandes 2D model which considers a larger 
mesh with no spatial separation.
5.2. Laminated beam

In this section, a symmetric composite cross‐ply beam with a piezo-
electric layer bonded to its top analyzed in references [41,52] is con-
sidered. The beam is depicted in Fig. 3b. The aim of this analysis is 
to assess the performance of the proposed method to model piezoelec-
tric laminated beams with different length to thickness ratios, for both 
open and close circuit conditions. The characteristics of the tests are 
described as follows:
Table 4
Short circuit (SC) dimensionless natural frequencies of simply support laminated be

S Mode type Exact 3D Present

5 bend 5.517 5.536
bend 13.589 13.599
bend 22.002 21.914
bend 30.635 30.712
bend 39.307 39.311
bend 47.901 48.023
t/c 37.034 37.211
sh – 37.338
sh 58.404 58.452

10 bend 7.412 7.443
bend 22.066 22.138
bend 38.020 38.129
bend 54.355 54.480
bend 71.027 71.225
bend 88.006 87.992
t/c 78.031 78.183
sh – 149.612
sh 177.022 177.617

20 bend 8.331 8.372
bend 29.648 29.771
bend 57.620 57.802
bend 88.264 88.551
bend 119.930 120.181
bend 152.080 152.778
t/c 158.870 159.351
sh – 595.256
sh 627.313 627.449

100 bend 8.711 8.754
bend 34.640 34.784
bend 77.202 77.579
bend 135.474 136.114
bend 208.269 209.252
bend 294.235 295.598
t/c 799.373 801.587
sh 14965.520 14882.606
• Geometry: the lamination scheme is [pz=0�=90�=0�] with relative
thickness of 0:1h=0:225h=0:45h=0:225h, where pz indicates the
piezoelectric layer. Four length to thickness ratios from thick to
very thin beams are analysed: S ¼ 5;10;20;100.

• Material properties: The substrate of the beam is made of graphite‐
epoxy with the following properties
EL; ET ; GLT ; GTTf g ¼ 181; 10:3; 7:17; 2:87f gGPa; νLT ; νTTf g ¼
0:28; 0:33f g; ρ ¼ 1578kg=m3where subscripts L and T refer to the
fiber and transverse direction respectively. The piezoelectric layer
is made of PZT‐5A transversely isotropic ceramic with the follow-
ing properties:
E1; E3; G23f g ¼ 61:0; 53:2; 21:1f gGPa, ν12; ν13f g ¼ 0:35; 0:38f g,
d31; d33; d15f g ¼ �171; 374; 584f g � 10�12m=V,
ɛ11; ɛ33f g ¼ 1:53; 1:50f g � 10�8 F=m; ρ ¼ 7600kg=m3.

• Boundary conditions: the beam is simply supported at its ends. Two
sets of electric boundary conditions are considered for the inner
surfaces:
– An open circuit condition (OC), where the electric potential

remains free everywhere, excepted on the inner surface of the
piezoelectric layer where it is forced to be zero.

– A close circuit or short circuit condition (SC), with the potential
forced to remain zero (grounded) at the outer and inner surfaces
of the piezoelectric layer.

The results of the natural frequencies are presented under a dimen-
sionless value computed as �ω ¼ ωnLS

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ0=Y0

p
, with ρ0 ¼ 1578kg=m3

and Y0 ¼ 10:3GPa corresponding to the graphite‐epoxy substrate.
The vibration mode type is denoted as bend, sh and t/c for bending,
am.

Error (%) CRLT [52] CRLT error (%)

0.3 5.643 2.3
0.1 13.943 2.6
0.4 22.645 2.9
0.3 32.010 4.5
0.0 42.164 7.3
0.3 53.095 10.8
0.5 37.923 2.4
– 37.633 –

0.1 61.681 5.6

0.4 7.496 1.1
0.3 22.572 2.3
0.3 39.015 2.6
0.2 55.772 2.6
0.3 72.908 2.6
0.0 90.593 2.9
0.2 78.585 0.7
– 150.533 –

0.3 178.585 0.9

0.5 8.361 0.4
0.4 29.982 1.1
0.3 58.676 1.8
0.3 90.290 2.3
0.2 122.973 2.5
0.5 156.083 2.6
0.3 159.178 0.2
– 602.128 –

0.0 631.696 0.7

0.5 8.712 0.0
0.4 34.664 0.1
0.5 77.313 0.1
0.5 135.813 0.2
0.5 209.074 0.4
0.5 295.849 0.5
0.3 799.438 0.0
0.6 15083.327 0.8



shear and extensional modes, respectively. The numerical values 
obtained with the PGD method are compared with results computed 
with the coupled refined layerwise theory (CRLT) presented in [52], 
consisting of a coupled refined global–local finite element model for 
which all the kinematic and stress continuity conditions are satisfied 
at the layer interfaces in the presence of non‐zero in plane electric field 
component. Exact three‐dimensional elasticity solution shown in [52], 
which has been derived from the study by Heyliger and Brooks in 1995 
[53], is taken as a reference.

Table 3 presents the values of the dimensionless natural frequen-
cies for the thick to very thin beams, for the open circuit electrical con-
dition. The first six bending frequencies as well as the extensional and 
shear modes are compared with the exact three‐dimensional elasticity
Fig. 4. PGD solution of modes shapes for the laminated bea
solution. These results show the excellent agreement with reference
values for all types of modes. The maximum relative error is 0.6 %,
although most of them are below 10�4 expressed in times one.

The values of the dimensionless natural frequencies for the thick to
very thin beams for the close circuit electrical condition are shown in
Table 4. The first six bending frequencies as well as the extensional
and shear modes are also compared with the exact three‐
dimensional elasticity solution. In this instance, the maximum relative
error is also 0.6 %, but in general these errors are higher than those
obtained for the open circuit condition. In any case, the results show
a very good fit with respect to the reference values and mainly
improve those obtained with the coupled refined layerwise theory,
especially for the thick case.
m (pz=0�=90�=0�) with S ¼ 5, for short circuit condition. 



S Mode type Exact 3D Present Error (%) CRLT [52] CRLT error (%)

5 bend 3.974 3.974 0.01 4.258 7.1
bend 8.962 8.963 0.01 9.153 2.1
bend 14.344 14.353 0.07 13.291 7.3

10 bend 6.221 6.221 0.00 6.538 5.1
bend 15.895 15.892 0.02 17.035 7.2
bend 25.729 25.728 0.00 27.173 5.6
bend 35.847 35.853 0.02 36.694 2.4
bend 46.384 46.407 0.05 45.541 1.8
bend 57.375 57.409 0.06 53.633 6.5
sh 62.168 62.167 0.00 62.535 0.6

20 bend 7.866 7.877 0.14 8.026 2.0
bend 24.883 24.880 0.01 26.154 5.1
bend 44.087 44.084 0.01 47.082 6.8
bend 63.581 63.574 0.01 68.148 7.2
bend 83.159 83.155 0.00 88.739 6.7
bend 102.916 102.918 0.00 108.747 5.7
sh 131.774 131.776 0.00 132.315 0.4

Table 6
Open circuit dimensionless natural frequencies of cantilever sandwich beam.

S Mode type ANSYS Present Error (%) CRLT [52] CRLT error (%)

5 bend 1.880 1.885 0.3 1.989 5.8
bend 6.144 6.181 0.6 6.433 4.7
bend 11.618 11.732 1.0 11.436 1.6
t-c 15.400 15.416 0.1 – –

bend 17.448 17.666 1.2 14.847 14.9

10 bend 2.592 2.595 0.1 2.670 3.0
bend 9.987 10.019 0.3 10.624 6.4
bend 20.393 20.467 0.4 21.656 6.2
bend 30.165 30.524 1.2 31.289 3.7
t-c 33.327 33.401 0.2 – –

bend 41.120 41.665 1.3 41.404 0.7
bend 51.841 52.277 0.8 50.064 3.4

20 bend 2.967 2.968 0.0 2.997 1.0
bend 14.661 14.678 0.1 15.299 4.3
bend 32.959 33.018 0.2 34.951 6.0
bend 52.321 52.450 0.2 55.911 6.9
t-c 67.506 67.551 0.1 – –

bend 72.436 72.354 0.1 77.303 6.7
bend 92.277 92.315 0.0 98.001 6.2

Table 7
Open circuit dimensionless natural frequencies of clamped sandwich beam.

S Mode type ANSYS Present Error (%) CRLT [52] CRLT error (%)

5 bend 4.849 4.858 0.2 5.152 6.3
bend 9.995 10.087 0.9 10.055 0.7
bend 15.700 15.748 0.3 14.332 8.6

10 bend 8.520 8.485 0.4 9.122 7.8
bend 17.477 17.427 0.3 18.561 7.0
bend 27.636 27.642 0.0 28.797 5.0
bend 38.124 38.052 0.2 38.517 1.8
bend 49.090 48.891 0.4 47.602 2.3
bend 60.368 60.262 0.2 55.820 6.8

20 bend 13.534 13.452 0.6 14.181 5.6
bend 29.351 29.215 0.5 31.228 7.1
bend 47.751 47.550 0.4 50.990 7.5
bend 67.019 66.753 0.4 71.473 7.3
bend 86.793 86.452 0.4 91.982 6.6
bend 106.895 106.617 0.3 112.103 5.5

Table 5
Open circuit dimensionless natural frequencies of simply support sandwich beam.



• Geometry: Thickness of the piezoelectric layer and face sheets are
0:1h while thickness of the core is assumed to be 0:7h. Three length
to thickness ratios are analysed: S ¼ 5;10;20.

Fig. 4 represents the first ten vibration modes for the thick beam 
considering short circuit condition. The PGD algorithm is able to 
detect not only bending modes, but also extensional, shear and thick-
ness modes with complex displacement distribution along either the 
beam axis or the thickness.

5.3. Sandwich beam

In order to evaluate the PGD algorithm for solving coupled piezo-
electric problems in sandwich beams with layers of very different char-
acteristics, the present test consists of a three‐layer sandwich beam 
composed of two graphite‐epoxy faces and a soft core with a PZT‐5A 
layer bonded to its top as shown in Fig. 3c. Additionally, the proposed 
formulation is validated to solve problems under different boundary 
conditions. This comprehensive test is also analysed in [41,52] with 
the following characteristics:
Fig. 5. FRF evaluated at the top at x ¼ L=3 for the clamped sandwich beam wit
• Material properties: The face sheets are made of graphite‐epoxy with
the following properties
EL; ET ; GLT ; GTTf g ¼ 131:1; 6:9; 3:588; 2:3322f gGPa; νLT ; νTTf g ¼
0:32; 0:49f g; ρ ¼ 1000kg=m3

The material properties of the soft core are:
E1; E2; E3; G12; G13; G23f g ¼ 0:2208; 0:2001; 2760; 16:56; 545:1;f
455:4gMPa, ν12; ν13; ν23f g ¼ 0:99; 0:00003; 0:00003f g; ρ ¼
70 kg=m3.

• Boundary conditions: Three different support cases are considered;
simply support, cantilever and clamped, under open circuit electri-
cal boundary conditions.

In Tables 5–7, the natural frequencies are also presented under
a dimensionless value computed as �ω ¼ ωnLS

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ0=Y0

p
, with ρ0 ¼

1000kg=m3 and Y0 ¼ 6:9GPa. The numerical values obtained with
the PGD method are compared with results of the coupled refined the-
ory in [52] and the results computed with the commercial software
ANSYS using a very refined mesh, except for the simply support case
for which the exact 3D solution is also provided in the previous
h S ¼ 10: (a) horizontal displacement, (b) vertical displacement (c) voltage.



6. Conclusions

The main goal of this paper is to extend the PGD formulation to
multi‐field analysis in solid mechanics for the forced vibration prob-
lems. A new formulation based on the PGD method applied to bidi-
mensional piezoelectric laminated beams is developed. A harmonic
space‐frequency description of the dynamic problem is first considered
and a variable separation in the spatial domain is introduced. For both
spatial coordinates x (beam axis coordinate) and z (thickness coordi-
nate), a classical 3‐node FE is used in the discretization. In addition,
the load frequency is also introduced as a problem variable. The
derived iterative methodology implies the computation of three 1D
problems for each enrichment step used to represent the solution.
The fixed‐point method is employed to obtain the results for each of
the N enrichment steps. The advantages of the proposed algorithm
become relevant when the number of numerical layers increases and
greater precision is required. In these cases the number of degrees of
freedom in the classical formulation of the problem grows exponen-
tially and the separation of variables becomes a very useful tool to
reduce the order and limit the computational cost. Here, the potential
of the PGD formulation has been demonstrated by the accuracy of its
results.

Indeed, the proposed formulation has been validated through sev-
eral numerical tests, including different composite and sandwich beam
configurations with a great variety of slenderness ratios and boundary
conditions. The current study show the potential of the approach to

reference. It should be mentioned here that for the cantilever and the 
clamped beam tests it is required to build simutaneously 2‐tuple in 
order to achieve accurate results as in [54]. Further information on 
this technique can be also found in [55,56].

As a general remark, the highest frequencies occur for the clamped 
beam and the lowest values are obtained for the cantilever beam 
(clamped/free case). The natural frequencies obtained with the PGD 
method are almost always lower than those of the couple refined lay-
erwise model with continuous inter‐laminar stresses (CRLT) and the 
differences with the reference values remain always low. The maxi-
mum relative error is 1.3 % and the average relative error does not 
exceed 0.3 % for the three cases of boundary conditions considered. 
This is especially remarkable for the simply supported beam, for which 
the result of the PGD model achieves a really high accuracy compared 
to the exact three‐dimensional elastic solution. In this case, the aver-
age error obtained with the PGD methodology is 0.02% while that 
achieved by the CRLT model is almost 5%.

Fig. 5 is designed to show the potential of the new robust varia-
tional formulation to find the solution for a set of the load frequency
within an interval ωmin; ωmax½ �. In the graph, the frequency response
function (FRF) of the electromechanical problem is plotted. It shows
the agreement between the amplitude of the displacements and the 
voltage response calculated both through a harmonic analysis in 
ANSYS and using the proposed PGD formulation. The semi‐
logarithmic representation allow us to detect the anti‐resonance peaks. 
This particular feature can be used to evaluate the validity of the com-
puted FRF using the PGD method. In particular, Fig. 5 represents the 
FRF of vertical and horizontal displacements and voltage separately, 
for the clamped sandwich beam under a vertical harmonic point load
placed at x ¼ L=2. Only the response at the top at x ¼ L=3 of the beam 
with a slenderness ratio of S ¼ 10 is represented. In this case, there are 
six bending modes in the frequency range under consideration, as it is 
remarked in Table 7. Nevertheless, only the symmetrical vibration 
bending modes (odd modes) can be distinguished in this graphical rep-
resentation. This is due to the fact that the vibration nodes of the anti‐
symmetric bending modes (even modes) are located at the central line 
of the beam where the load is applied. The PGD results are in good 
concordance with ANSYS solution.
evaluate all kinds of mode shapes, including complex thickness modes
with non‐uniform displacement distribution along x and z axis. This is
achieved by the layerwise approach. In addition, the method has been
proved to be successful in detecting even small variations in natural
frequencies derived from different electrical boundary conditions,
such as short circuit and open circuit conditions. This opens up the
possibility of confidently introducing electrical loads into the formula-
tion, by adding an equivalent capacitance matrix to the dielectric
matrix as in reference [57]. This would lead to the extension of the
PGD approach to the parametric modeling of bimorph piezoelectric
energy harvesting devices.
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