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1. Introduction

When a material is subject to mechanical loading, heat sources
appear inside the material. It has been widely studied for metallic
materials machining, forming or laminating processes and fatigue char-
acterization [1,2]. Heat sources appearance occurs as well in composite
materials [3,4] under mechanical loading [5], for instance in forming
process [6] or in fatigue tests [7,8]. The interest for heat sources lies in
heir relationship to the thermomechanical properties of the material,
o the fatigue life prediction, and to the damage assessment. Heat
ources study is also important for investigation of new fabrication
rocesses such as additive manufacturing (AM). Douellou et al. [9]

evaluates the mechanical dissipation in AM materials during fatigue
loading. Additive manufacturing can also produce functional or multi-
functional materials in which heat sources have a functional role. Neely
et al. [10] describes reactive materials architectures that are designed
for soldering in inaccessible areas. An energetic material is integrated
in the material by additive manufacturing and is used for joining when
ignited. The heat source must be prescribed for a use in welding at the
appropriate fusion temperature.

Extension to the study of Functionally Graded Materials (FGM)
properties might also be interesting as FGM are often designed to
be used in severe temperature environment, under high thermal and
mechanical loads [11].

For the design of functional materials as well as for structural parts,
to assess damage or to contribute to the material characterization,
the knowledge of the heat sources is then of main importance : the
determination of the heat sources is needed to reach a target tempera-
ture at the surface in reactive materials joinings; it is also determined
as an intrinsic data of the material to understand mechanisms under
fatigue [12]. When the thermal effects reach the surface, thermal
imaging is often used : the surface temperature gives information for
heat sources reconstruction. The study of the thermal response of a
component under a heat source is then very useful. We can also cite
the application for non destructive damage assessment in laminated
composites. Many techniques are used [13] including thermography
analysis.

This study is restricted to laminated composites. Laminated com-
posite materials cover a very wide scope of application in industry, for
instance in the transportation or energy fields as structural materials.
For example in Carbon Fiber Reinforced Polymers [14], or in Glass
Fiber Reinforced Polymers [15], the determination of heat sources is
performed from the surface temperature field analysis, the temperature
being obtained by IR thermography [16] and the analysis by the
solution of an inverse problem [17]. Different methods have been
developed, but in this framework, it appears that many computations
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have to be performed to identify the characteristics of the heat source in
an iterative process. Thus, it calls for an efficient numerical tool to solve

any direct problems involving heat diffusion phenomenon for differ-
ent sets of parameters (position of the heat source, temporal evolution
of the heat source ...). For this purpose, reduced order modeling can
be advantageously used. In particular, the so-called Proper Generalized

ecomposition (PGD) [18] has shown interesting features to decrease
ignificantly the computational costs. Indeed, it allows us to decrease 
he dimensionality of numerous physical problems by introducing the
eparated representations of solutions. It is firstly introduced under
he name of ‘‘radial approximation’’ [19] by P. Ladevèze within the 
ramework of the LArge Time INcrement (LATIN) method. Concerning
he thermal analysis, the PGD method has already been carried out
or different issues: the moving thermal load on the surface is con-
idered in [20] with a space/time separation. The non-linear transient
hermal problem with a concentrated moving laser source is addressed
n [21]. It is applied in [22] for Dynamic Data-Driven Application 
ystems taking into account the prescribed temperature as parameters.
he reciprocity principle for real-time monitoring of thermal processes
transient analysis) is developed in [23]. The PGD is also used in the 
olution of an inverse heat conduction problem within the Bayesian
ramework [24]. The variables separation of the spatial coordinates x
nd z has already been used in [25] for laminates. For a review about 
he PGD and its fields of applications in our framework, the reader can
efer to [26–29].

Note that an alternative way to decrease the computational cost
onsists in using the Proper orthogonal decomposition (see [30] for
ransient thermal problem).

This work aims at modeling composite beam structures regardless
f the volume heat source location for unsteady thermal analysis with a
ow computational cost. For this purpose, the present approach is based
n the separated representation where the temperature is written as
 sum of products of unidimensional polynomials of 𝑥 coordinate, 𝑧
oordinate, the time 𝑡 and also the volume thermal heat position 𝑥𝑠.
 piecewise fourth-order Lagrange polynomial of 𝑧 is chosen as it is
articularly suitable to model composite structures. As far as the varia-
ion with respect to the axial coordinate is concerned, a 1D three-node
eam Finite Element (FE) is employed. The functions of the volume
eat source position are also piecewise quadratic. Finally, the deduced
on-linear problem is solved using a classical fixed point method.
hus, four 1D linear problems are solved alternatively, in which the 
umber of unknowns is much smaller than in a Layerwise approach.
nce different sets of these four 1D functions are determined, the

emperature fields can be deduced for any size and location of the heat
ources by applying the superposition principle. Nevertheless, in our
articular framework, the location of the heat source in the thickness
irection z or its temporal evolution can change. Thus, a new strategy
s developed to take into account these test cases. It relies on a so-
alled multi-resolution approach and comes from the preliminary stage 
f the Latin Method [31,32]. Once the 1D functions are computed for
 given configuration, they are used for subsequent computations with
ther heat source configurations. The new computations are limited to
he corrections of some of the previously built 1D functions instead of
erforming the whole analysis. In this way, the computational cost will
e reduced.

The outline of the article is the following. First, the unsteady
eat conduction problem is described. Then, the formulation of the 
arametrized problem based on the variables separation is given. The 
articular assumption on the temperature field yields a non-linear
roblem which is solved by an iterative process. The FE discretization is 
lso given. Then, different algorithms are shown to explain the multi-
esolution strategies. Finally, numerical results are provided to show
he possibilities of the method and assess the accuracy of the involved
esults. Different heat source and composite structures are considered.
2. Unsteady heat conduction problem description

A laminated beam with 𝑁𝐶 layers is defined in a domain  =
𝑥 × 𝑦 × 𝑧 = [0, 𝐿] × [− 𝑏

2 ≤ 𝑦 ≤ 𝑏
2 ] × [− ℎ

2 ≤ 𝑧 ≤ ℎ
2 ] expressed

in a Cartesian coordinate (𝑥, 𝑦, 𝑧). The cross-section of the beam is
rectangular. ℎ and 𝑏 are the height and the width, respectively. The
central line of the beam is chosen as the 𝑥 axis. It is shown in Fig. 1.

Considering the geometry and the boundary conditions, a 2D prob-
lem will be considered hereafter.

2.1. Heat conduction problem

2.1.1. Thermal constitutive equation
The physical problem considered here involves the linear heat

conduction equations. The constitutive equation is given by the Fourier
law:

𝐐 = −𝝀 𝐠𝐫𝐚𝐝(𝜃) (1)

where 𝜃, 𝐐, 𝝀 and 𝐠𝐫𝐚𝐝 are the temperature, the heat flux, the thermal
conductivity and the gradient operator, respectively. For the layer (𝑘),
we have

𝝀(𝑘) =

[

𝜆(𝑘)1 0
0 𝜆(𝑘)3

]

2.1.2. Heat transfer equation
Considering a prescribed volume heat source 𝑟𝑑 at the location 𝑀𝑠,

the heat transfer equation can be written as

𝜌𝑐𝑝
𝜕𝜃
𝜕𝑡

+ 𝑑𝑖𝑣(𝐐) = 𝑟𝑑𝛿(𝑀 −𝑀𝑠) (2)

where 𝜌 is the mass density, 𝑐𝑝 the heat capacity per unit mass, 𝑡 the
ime, 𝑡 ∈ [0, 𝑡𝑚𝑎𝑥]. 𝛿 is the Dirac delta function.

.2. The weak form of the boundary value problem

In the presented problem, the prescribed surface heat surface and
he convective heat transfer are not considered. For 𝛿𝜃 ∈ 𝛿𝛩 (𝛿𝛩 = {𝜃 ∈
𝐻1( × )∕𝜃 = 0 on 𝜕𝜃} with  = [0, 𝑡𝑚𝑎𝑥]), the variational principle
s given by:

find 𝜃 ∈ 𝛩, with 𝜃(𝑡 = 0) = 𝜃𝑖𝑛𝑖 such that:

∫ ∫
𝛿𝜃 𝜌𝑐𝑝

𝜕𝜃
𝜕𝑡

𝑑𝑑𝑡 − ∫ ∫
𝐠𝐫𝐚𝐝(𝛿𝜃)𝑇𝐐(𝜃)𝑑𝑑𝑡

= ∫ ∫ 𝛿𝜃 𝑟𝑑𝛿(𝑀 −𝑀𝑠) 𝑑𝑑𝑡
∀𝛿𝜃 ∈ 𝛿𝛩

(3)

𝛩 is the space of admissible temperatures, i.e. 𝛩 = {𝜃 ∈ 𝐻1( ×
)∕𝜃 = 𝜃𝑑 on 𝜕𝜃}.

. Application of the variable separation to the unsteady thermal
nalysis for a parametrized solution 𝒙𝒔

The Proper Generalized Decomposition (PGD) was introduced in
18] and is based on an a priori construction of separated variable

representation of the solution. For the thermal analysis, the solution
with separated coordinate variables has been developed in [20].

The following sections are dedicated to the introduction of this
approach to build a parametric solution for unsteady analysis of a
composite beam with heat sources at any locations on the 𝑥-axis. The
position and the size in the 𝑧-direction and the temporal evolution of
the heat source are fixed. The latter will be addressed in Section 4
considering a multi-resolution approach.

The problem defined by Eq. (1)–Eq. (3) is considered as a
parametrized problem where the heat source location 𝑥𝑠 is defined
in a bounded interval [0, 𝐿]. The thermal solution for a point 𝑀 of
coordinate (𝑥, 𝑧) of the structure, at the time 𝑡, depends on the values
of this parameter and is denoted 𝜃(𝑥, 𝑧, 𝑡, 𝑥 ) (see Fig. 2).
𝑠
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Fig. 1. The laminated beam and coordinate system.
Fig. 2. The laminated beam and heat source.
f

.1. The parametrized problem

The temperature solution 𝜃(𝑥, 𝑧, 𝑡, 𝑥𝑠) is constructed as the sum of
products of functions of only two spatial coordinates, time and heat

ource location (𝑁 ∈ N is the order of the representation) such that:

(𝑥, 𝑧, 𝑡, 𝑥𝑠) =
𝑁
∑

𝑖=1
𝑇 𝑖
𝑥(𝑥)𝑇

𝑖
𝑧(𝑧)𝑇

𝑖
𝑡 (𝑡)𝑇

𝑖
𝑥𝑠
(𝑥𝑠) (4)

where 𝑇 𝑖
𝑥(𝑥), 𝑇 𝑖

𝑧(𝑧), 𝑇
𝑖
𝑡 (𝑡) and 𝑇 𝑖

𝑥𝑠
(𝑥𝑠) are defined in 𝑥, 𝑧, [0, 𝑡𝑚𝑎𝑥] and

𝑥𝑠 , respectively. A classical quadratic FE approximation is used in 𝑥
nd 𝑥𝑠 and a fourth-order lagrangian expansion is used in 𝑧.

The expression of the gradient of the temperature is reduced to:

𝐫𝐚𝐝(𝜃) =
𝑁
∑

𝑖=1

[

𝑇 𝑖
𝑥,𝑥(𝑥)𝑇

𝑖
𝑧(𝑧)𝑇

𝑖
𝑡 (𝑡)𝑇

𝑖
𝑥𝑠
(𝑥𝑠)

𝑇 𝑖
𝑥(𝑥)𝑇

𝑖
𝑧,𝑧(𝑧)𝑇

𝑖
𝑡 (𝑡)𝑇

𝑖
𝑥𝑠
(𝑥𝑠)

]

(5)

For a structure submitted to a localized volume heat source at
𝑥 = 𝑥𝑠, the parametrized problem can be formulated as:

find 𝜃 ∈ 𝛩𝑒𝑥𝑡 with 𝜃(𝑡 = 0) = 𝜃𝑖𝑛𝑖 (𝛩𝑒𝑥𝑡 = {𝜃 ∈ 𝐻1([0, 𝑡𝑚𝑎𝑥]×𝑥 ×𝑧 ×
𝑥𝑠 )∕𝜃 = 𝜃𝑑 on 𝜕𝜃}) such that:

𝑏( 𝜕𝜃𝜕𝑡 , 𝛿𝜃) − 𝑎(𝜃, 𝛿𝜃) − 𝑑𝑟(𝛿𝜃) = 0, ∀𝛿𝜃 ∈ 𝛿𝛩𝑒𝑥𝑡 (6)

where the bilinear forms 𝑎, 𝑏 and the linear forms 𝑑𝑟 are defined by

𝑎(𝜃, 𝛿𝜃) = ∫

𝑡𝑚𝑎𝑥

0 ∫𝑥
∫𝑧

∫𝑥𝑠

𝐠𝐫𝐚𝐝(𝛿𝜃)𝑇𝐐(𝜃) 𝑑𝑥𝑠𝑑𝑑𝑡

𝑏( 𝜕𝜃
𝜕𝑡

, 𝛿𝜃) = ∫

𝑡𝑚𝑎𝑥

0 ∫𝑥
∫𝑧

∫𝑥𝑠

𝛿𝜃 𝜌𝑐𝑝
𝜕𝜃
𝜕𝑡

𝑑𝑥𝑠𝑑𝑑𝑡

𝑑𝑟(𝛿𝜃) = ∫

𝑡𝑚𝑎𝑥

0 ∫𝑥
∫𝑧

∫𝑥𝑠

𝛿𝜃 𝑟𝑑𝛿(𝑀 −𝑀𝑠) 𝑑𝑥𝑠𝑑𝑑𝑡

(7)

3.2. The problem to be solved

The resolution of Eq. (6) is based on a greedy algorithm. If we
assume that the first 𝑚 functions have been already computed, the trial
function for the iteration 𝑚 + 1 is written as

𝜃𝑚+1(𝑥, 𝑧, 𝑡, 𝑥 ) = 𝜃𝑚(𝑥, 𝑧, 𝑡, 𝑥 ) + 𝑇 (𝑥)𝑇 (𝑧)𝑇 (𝑡)𝑇 (𝑥 ) (8)
𝑠 𝑠 𝑥 𝑧 𝑡 𝑥𝑠 𝑠
where 𝑇𝑥, 𝑇𝑧, 𝑇𝑡 and 𝑇𝑥𝑠 are the functions to be computed and 𝜃𝑚 is the
associated known sets at iteration 𝑚 defined by

𝜃𝑚(𝑥, 𝑧, 𝑡, 𝑥𝑠) =
𝑚
∑

𝑖=1
𝑇 𝑖
𝑥(𝑥)𝑇

𝑖
𝑧(𝑧)𝑇

𝑖
𝑡 (𝑡)𝑇

𝑖
𝑥𝑠
(𝑥𝑠) (9)

The test function is

𝛿(𝑇𝑥𝑇𝑧𝑇𝑡𝑇𝑥𝑠 ) = 𝛿𝑇𝑥.𝑇𝑧.𝑇𝑡.𝑇𝑥𝑠 +𝑇𝑥.𝛿𝑇𝑧.𝑇𝑡.𝑇𝑥𝑠 +𝑇𝑥.𝑇𝑧.𝛿𝑇𝑡.𝑇𝑥𝑠 +𝑇𝑥.𝑇𝑧.𝑇𝑡.𝛿𝑇𝑥𝑠
(10)

The test function defined by Eq. (10), the trial function defined by
Eq. (8) are introduced into the weak form Eq. (6) to obtain the four
ollowing equations:

𝑏(𝑇𝑥.𝑇𝑧.𝑇𝑥𝑠 .
𝜕𝑇𝑡
𝜕𝑡 , 𝑇𝑧.𝑇𝑡.𝑇𝑥𝑠 .𝛿𝑇𝑥) − 𝑎(𝑇𝑥.𝑇𝑧.𝑇𝑡.𝑇𝑥𝑠 , 𝑇𝑡.𝑇𝑥𝑠 .𝑇𝑧.𝛿𝑇𝑥) =

𝑑𝑟(𝑇𝑡.𝑇𝑥𝑠 .𝑇𝑧.𝛿𝑇𝑥) − 𝑏( 𝜕𝜃
𝑚

𝜕𝑡 , 𝑇𝑡.𝑇𝑥𝑠 .𝑇𝑧.𝛿𝑇𝑥) + 𝑎(𝜃𝑚, 𝑇𝑡.𝑇𝑥𝑠 .𝑇𝑧.𝛿𝑇𝑥),
∀𝛿𝑇𝑥

(11)

𝑏(𝑇𝑥.𝑇𝑧.𝑇𝑥𝑠 .
𝜕𝑇𝑡
𝜕𝑡 , 𝑇𝑥.𝑇𝑡.𝑇𝑥𝑠 .𝛿𝑇𝑧) − 𝑎(𝑇𝑥.𝑇𝑧.𝑇𝑡.𝑇𝑥𝑠 , 𝑇𝑡.𝑇𝑥𝑠 .𝑇𝑥.𝛿𝑇𝑧) =

𝑑𝑟(𝑇𝑡.𝑇𝑥𝑠 .𝑇𝑥.𝛿𝑇𝑧) − 𝑏( 𝜕𝜃
𝑚

𝜕𝑡 , 𝑇𝑡.𝑇𝑥𝑠 .𝑇𝑥.𝛿𝑇𝑧) + 𝑎(𝜃𝑚, 𝑇𝑡.𝑇𝑥𝑠 .𝑇𝑥.𝛿𝑇𝑧),
∀𝛿𝑇𝑧

(12)

𝑏(𝑇𝑥.𝑇𝑧.𝑇𝑥𝑠 .
𝜕𝑇𝑡
𝜕𝑡 , 𝑇𝑥.𝑇𝑧.𝑇𝑥𝑠 .𝛿𝑇𝑡) − 𝑎(𝑇𝑥.𝑇𝑧.𝑇𝑡.𝑇𝑥𝑠 , 𝑇𝑥.𝑇𝑧.𝑇𝑥𝑠 .𝛿𝑇𝑡) =

𝑑𝑟(𝑇𝑥.𝑇𝑧.𝑇𝑥𝑠 .𝛿𝑇𝑡) − 𝑏( 𝜕𝜃
𝑚

𝜕𝑡 , 𝑇𝑥.𝑇𝑧.𝑇𝑥𝑠 .𝛿𝑇𝑡) + 𝑎(𝜃𝑚, 𝑇𝑥.𝑇𝑧.𝑇𝑥𝑠 .𝛿𝑇𝑡),
∀𝛿𝑇𝑡

(13)
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𝑏(𝑇𝑥.𝑇𝑧.𝑇𝑥𝑠 .
𝜕𝑇𝑡
𝜕𝑡 , 𝑇𝑡.𝑇𝑥.𝑇𝑧.𝛿𝑇𝑥𝑠 ) − 𝑎(𝑇𝑥.𝑇𝑧.𝑇𝑡.𝑇𝑥𝑠 , 𝑇𝑡.𝑇𝑥.𝑇𝑧.𝛿𝑇𝑥𝑠 ) =

𝑑𝑟(𝑇𝑡.𝑇𝑥.𝑇𝑧.𝛿𝑇𝑥𝑠 ) − 𝑏( 𝜕𝜃
𝑚

𝜕𝑡 , 𝑇𝑡.𝑇𝑥.𝑇𝑧.𝛿𝑇𝑥𝑠 ) + 𝑎(𝜃𝑚, 𝑇𝑡.𝑇𝑥.𝑇𝑧.𝛿𝑇𝑥𝑠 ),
∀𝛿𝑇𝑥𝑠

(14)

From Eq. (11) to Eq. (14), a coupled non-linear problem is derived.
hus, a non-linear resolution strategy has to be used. A classical fixed
oint method is carried out as shown in Algorithm 1.

Algorithm 1
for 𝑚 = 0 to 𝑁𝑚𝑎𝑥 do

Initialize �̃� (0)
𝑥 , �̃� (0)

𝑡 , �̃� (0)
𝑥𝑠

for 𝑘 = 1 to 𝑘𝑚𝑎𝑥 do
Compute �̃� (𝑘)

𝑧 from Eq. (12) (linear equation on 𝑧), �̃� (𝑘−1)
𝑥 ,

�̃� (𝑘−1)
𝑡 , �̃� (𝑘−1)

𝑥𝑠 being known
Compute �̃� (𝑘)

𝑡 from Eq. (13), �̃� (𝑘−1)
𝑥 , �̃� (𝑘)

𝑧 , �̃� (𝑘−1)
𝑥𝑠 being known

Compute �̃� (𝑘)
𝑥 from Eq. (11) (linear equation on 𝑥), �̃� (𝑘)

𝑧 , �̃� (𝑘)
𝑡 ,

�̃� (𝑘−1)
𝑥𝑠 being known

Compute �̃� (𝑘)
𝑥𝑠 from Eq. (14) (linear equation on 𝑥𝑠 ), �̃�

(𝑘)
𝑥 , �̃� (𝑘)

𝑡 ,
�̃� (𝑘)
𝑧 being known

Check for convergence
end for
Set 𝑇 𝑚+1

𝑥 = �̃� (𝑘)
𝑥 , 𝑇 𝑚+1

𝑧 = �̃� (𝑘)
𝑧 , 𝑇 𝑚+1

𝑡 = �̃� (𝑘)
𝑡 , 𝑇 𝑚+1

𝑥𝑠
= �̃� (𝑘)

𝑥𝑠 ,
Set 𝜃𝑚+1 = 𝜃𝑚 + 𝑇 𝑚+1

𝑥 𝑇 𝑚+1
𝑧 𝑇 𝑚+1

𝑡 𝑇 𝑚+1
𝑥𝑠

Check for convergence
end for

3.3. Discretization of the problem

A discretization of Eq. (11) to Eq. (14) is introduced. Classical finite
lement approximation of the functions (𝑇𝑥, 𝑇𝑧, 𝑇𝑥𝑠 ) in 𝑥, 𝑧 and 𝑥𝑠
espectively is used. The elementary vectors of degree of freedom (dof)
ssociated with the finite element mesh in 𝑥, 𝑧 and 𝑥𝑠 are denoted
𝑥
𝑒 , 𝐪𝑧𝑒 and 𝐪𝑥𝑠𝑒 , respectively. The temperature fields and the associated
radient are determined from the values of 𝐪𝑥𝑒 , 𝐪𝑧𝑒 and 𝐪𝑥𝑠𝑒 by

𝑇𝑥𝑒 = 𝐍𝑥𝐪𝑥𝑒 , 𝑒
𝑥 = 𝐁𝑥𝐪𝑥𝑒 ,

𝑇𝑧𝑒 = 𝐍𝑧𝐪𝑧𝑒 , 𝑒
𝑧 = 𝐁𝑧𝐪𝑧𝑒 ,

𝑇𝑥𝑠 𝑒 = 𝐍𝑥𝑠𝐪
𝑥𝑠
𝑒 ,

(15)

here 𝑒
𝑥
𝑇 =

[

𝑇𝑥,𝑥 𝑇𝑥
]

, 𝑒
𝑧
𝑇 =

[

𝑇𝑧 𝑇𝑧,𝑧
]

. The matrices [𝐍𝑥],
[𝐁𝑥], [𝐍𝑧], [𝐁𝑧], [𝐍𝑥𝑠 ] contain the interpolation functions, their deriva-
tives and the jacobian components dependent on the chosen discrete
representation.

3.4. Finite element problem to be solved on 𝑧

The functions 𝑇 (𝑘−1)
𝑥 , 𝑇 (𝑘−1)

𝑡 , 𝑇 (𝑘−1)
𝑥𝑠 are assumed to be known. They

will be denoted �̃�𝑥, �̃�𝑡, �̃�𝑥𝑠 , respectively and the function 𝑇 (𝑘)
𝑧 to be

computed will be denoted 𝑇𝑧.
The variational problem defined on 𝑧 from Eq. (12) can be written

under the following form:

∫𝑧

𝛿𝑇
𝑧 𝝀𝑥𝑡𝑥𝑠 (�̃�𝑥, �̃�𝑡, �̃�𝑥𝑠 )𝑧𝑑𝑧 = ∫𝑧

𝛿𝑇
𝑧

[

𝐐𝑟
𝑥𝑡𝑥𝑠

(�̃�𝑥, �̃�𝑡, �̃�𝑥𝑠 )

+ 𝐐𝑚
𝑥𝑡𝑥𝑠

(�̃�𝑥, �̃�𝑡, �̃�𝑥𝑠 , 𝜃
𝑚)
]

𝑑𝑧 (16)

where 𝝀𝑥𝑡𝑥𝑠 , 𝐐
𝑟
𝑥𝑡𝑥𝑠

and 𝐐𝑚
𝑥𝑡𝑥𝑠

are given in Appendix A.3.
The introduction of the finite element approximation Eq. (15) in the

variational Eq. (16) leads to the linear system

𝜦 (�̃� , �̃� , �̃� )𝐪𝑧 =  (�̃� , �̃� , �̃� , 𝜃𝑚) (17)
𝑥𝑡𝑥𝑠 𝑥 𝑡 𝑥𝑠 𝑥𝑡𝑥𝑠 𝑥 𝑡 𝑥𝑠 t
�̃� , �̃� , �̃�
�̃� , �̃� , �̃�

where 𝐪𝑧 is the vector of the nodal temperatures associated with the
finite element mesh in 𝑧. As in the previous section, 𝜦𝑥𝑡𝑥𝑠 

( 𝑥 𝑡 𝑥𝑠 
)

and the equilibrium residual 𝑥𝑡𝑥𝑠 
( 𝑥 𝑡 𝑥𝑠 

, 𝜃𝑚) are obtained by sum-
ming the following elementary matrices and vectors:

𝜦𝑒
𝑥𝑡𝑥𝑠

(�̃�𝑥, �̃�𝑡, �̃�𝑥𝑠 ) = ∫𝑧𝑒
𝐁𝑇
𝑧 𝝀𝑥𝑡𝑥𝑠 (�̃�𝑥, �̃�𝑡, �̃�𝑥𝑠 )𝐁𝑧𝑑𝑧 (18)

nd

𝑒
𝑥𝑡𝑥𝑠

(�̃�𝑥, �̃�𝑡, �̃�𝑥𝑠 , 𝜃
𝑚) = ∫𝑧𝑒

𝐁𝑇
𝑧

[

𝐐𝑟
𝑥𝑡𝑥𝑠

(�̃�𝑥, �̃�𝑡, �̃�𝑥𝑠 )

+ 𝐐𝑚
𝑥𝑡𝑥𝑠

(�̃�𝑥, �̃�𝑡, �̃�𝑥𝑠 , 𝜃
𝑚)
]

𝑑𝑧 (19)

.5. Ordinary differential equation to be solved on [0, 𝑡𝑚𝑎𝑥]

Again, the functions 𝑇 (𝑘)
𝑧 , 𝑇 (𝑘−1)

𝑥 , 𝑇 (𝑘−1)
𝑥𝑠 which are assumed to be

nown, will be denoted �̃�𝑧, �̃�𝑥, �̃�𝑥𝑠 , respectively and the function 𝑇 (𝑘)
𝑡

o be computed will be denoted 𝑇𝑡.
From Eq. (13), the following ODE can be deduced to compute 𝑇𝑡:

(�̃�𝑥, �̃�𝑧, �̃�𝑥𝑠 )
𝜕𝑇𝑡
𝜕𝑡

+ 𝐵(�̃�𝑥, �̃�𝑧, �̃�𝑥𝑠 )𝑇𝑡(𝑡) = 𝐶𝑟(𝑡, �̃�𝑥, �̃�𝑧, �̃�𝑥𝑠 )

− 𝐶𝑚(𝑡, �̃�𝑥, �̃�𝑧, �̃�𝑥𝑠 , 𝜃
𝑚) (20)

This equation can be solved using a fourth-order Runge–Kutta
ethod. 𝐴,𝐵, 𝐶 given in Appendix A.1.

.6. Finite element problem to be solved on 𝑥

For the sake of simplicity, the functions 𝑇 (𝑘)
𝑧 , 𝑇 (𝑘)

𝑡 , 𝑇 (𝑘−1)
𝑥𝑠 which are

ssumed to be known, will be denoted �̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 , respectively and the
unction 𝑇 (𝑘)

𝑥 to be computed will be denoted 𝑇𝑥.
The variational problem defined on 𝑥 from Eq. (11) can be written

nder the following form:

∫𝑥

𝛿𝑇
𝑥 𝝀𝑧𝑡𝑥𝑠 (�̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 )𝑥𝑑𝑥 = ∫𝑥

𝛿𝑇
𝑥

[

𝐐𝑟
𝑧𝑡𝑥𝑠

(�̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 )

+ 𝐐𝑚
𝑧𝑡𝑥𝑠

(�̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 , 𝜃
𝑚)
]

𝑑𝑥 (21)

here 𝝀𝑧𝑡𝑥𝑠 , 𝐐
𝑟
𝑧𝑡𝑥𝑠

and 𝐐𝑚
𝑧𝑡𝑥𝑠

are given in Appendix A.2.
The introduction of the finite element approximation Eq. (15) in the

ariational Eq. (21) leads to the linear system

𝑧𝑡𝑥𝑠 (�̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 )𝐪
𝑥 = 𝑧𝑡𝑥𝑠 (�̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 , 𝜃

𝑚) (22)

here 𝐪𝑥 is the vector of the nodal temperatures associated with the
inite element mesh in 𝑥, 𝜦𝑧𝑡𝑥𝑠 (�̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 ) the matrix obtained by
umming the elements’ conductivity and capacity matrices involved
n 𝜦𝑒

𝑧𝑡𝑥𝑠
(�̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 ). 𝑧𝑡𝑥𝑠 (�̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 , 𝜃

𝑚) is the equilibrium residual ob-
ained by summing the elements’ residual load vectors 𝑒

𝑧𝑡𝑥𝑠
(�̃�𝑧, �̃�𝑡,

̃𝑥𝑠 , 𝜃
𝑚)

𝑒
𝑧𝑡𝑥𝑠

(�̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 ) = ∫𝐿𝑒

𝐁𝑇
𝑥 𝝀𝑧𝑡𝑥𝑠 (�̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 )𝐁𝑥𝑑𝑥 (23)

nd

𝑒
𝑧𝑡𝑥𝑠

(�̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 , 𝜃
𝑚) = ∫𝐿𝑒

𝐁𝑇
𝑥

[

𝐐𝑟
𝑧𝑡𝑥𝑠

(�̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 )

+ 𝐐𝑚
𝑧𝑡𝑥𝑠

(�̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 , 𝜃
𝑚)
]

𝑑𝑥 (24)

.7. Explicit solution on 𝑥𝑠

For this problem, the functions 𝑇 (𝑘)
𝑥 , 𝑇 (𝑘)

𝑧 , 𝑇 (𝑘)
𝑡 are assumed to be

nown and are denoted �̃�𝑥, �̃�𝑧 and �̃�𝑡 respectively. The function 𝑇 (𝑘)
𝑥𝑠
o be computed will be denoted 𝑇𝑥𝑠 . The problem Eq. (14) can be
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written such that the unknown function 𝑇𝑥𝑠 
could be computed in a 

traightforward manner as:

𝑇𝑥𝑠 (𝑥𝑠) =

𝐹𝑠(�̃�𝑥, �̃�𝑧, �̃�𝑡)�̃�𝑥(𝑥𝑠) −
𝑚
∑

𝑖=1
𝐹 𝑖
𝑚(�̃�𝑥, �̃�𝑧, �̃�𝑡, 𝜃

𝑚)𝑇 𝑖
𝑥𝑠
(𝑥𝑠)

𝐺𝑠(�̃�𝑥, �̃�𝑧, �̃�𝑡)
(25)

where

𝐺𝑠(�̃�𝑥, �̃�𝑧, �̃�𝑡) = ∫𝑧

𝜌𝑐𝑝�̃�
2
𝑧 𝑑𝑧∫

𝑡𝑚𝑎𝑥

0

𝜕�̃�𝑡
𝑑𝑡

�̃�𝑡 𝑑𝑡 ∫𝑥

�̃� 2
𝑥 𝑑𝑥

+∫

𝑡𝑚𝑎𝑥

0
�̃� 2
𝑡 𝑑𝑡 ∫𝑥

𝑥(�̃�𝑥)𝑇
[

∫𝑧

𝜮𝐳(�̃�𝑧)𝑇 𝝀𝜮𝐳(�̃�𝑧)𝑑𝑧

]

𝑥(�̃�𝑥) 𝑑𝑥

𝐹𝑠(�̃�𝑥, �̃�𝑧, �̃�𝑡) = ∫

𝑡𝑚𝑎𝑥

0
𝑟𝑑 (𝑡)�̃�𝑡 𝑑𝑡∫𝑠𝑜𝑢𝑟𝑐𝑒

𝑧

�̃�𝑧 𝑑𝑧

𝐹 𝑖
𝑚(�̃�𝑥, �̃�𝑧, �̃�𝑡, 𝜃

𝑚) = ∫𝑧

𝜌𝑐𝑝�̃�𝑧𝑇
𝑖
𝑧𝑑𝑧∫

𝑡𝑚𝑎𝑥

0
�̃�𝑡
𝜕𝑇 𝑖

𝑡
𝑑𝑡

𝑑𝑡 ∫𝑥

�̃�𝑥𝑇
𝑖
𝑥 𝑑𝑥

+∫

𝑡𝑚𝑎𝑥

0
�̃�𝑡𝑇

𝑖
𝑡 𝑑𝑡 ∫𝑥

𝑥(�̃�𝑥)𝑇

∫𝑧

𝜮𝐳(�̃�𝑧)𝑇 𝝀𝜮𝐳(𝑇 𝑖
𝑧)𝑑𝑧 𝑥(𝑇 𝑖

𝑥) 𝑑𝑥

(26)

4. Multi-resolution strategy

The aim of this section consists in describing different strategies to
take into account the modification of parameters associated to the heat
source or the geometry of the composite beam (number of layers, loca-
tion of the heat source and time dependency of the loading). The main
issue is to decrease the computational cost of numerous calculations
for different configurations. For instance, it will be possible to change
the location in the thickness direction and the temporal evolution
of the heat source and the number of layers of the beam. For this
purpose, a multi-resolution algorithm is given, using the advantages of
the present variable separation method. The approach described here
can be considered as an extension of the so-called preliminary stage
introduced in [31,32] to improve the convergence rate of the LATIN
method. Once some couples (at least 2) are built, the process consists
in updating: (i) only the 1D time functions 𝑇 𝑖

𝑡 ; (ii) both all the 1D z-
unctions 𝑇 𝑗

𝑧 then the 1D time functions 𝑇 𝑖
𝑡 . The other basis functions

re assumed to be known. Thus, assuming that 𝑁1 couples are built,
these problems to be solved can be written as

𝑎(
𝑁1
∑

𝑖=1
𝑇 𝑖
𝑥.𝑇

𝑖
𝑧 .𝑇

𝑖
𝑡 .𝑇

𝑖
𝑥𝑠
,
𝑁1
∑

𝑖=1
𝑇 𝑖
𝑥.𝑇

𝑖
𝑧 .𝑇

𝑖
𝑥𝑠
.𝛿𝑇 𝑖

𝑡 ) = 𝑏(
𝑁1
∑

𝑖=1
𝑇 𝑖
𝑥.𝑇

𝑖
𝑧 .𝑇

𝑖
𝑥𝑠
.𝛿𝑇 𝑖

𝑡 ) ∀𝛿𝑇 𝑖
𝑡 (27)

𝑎(
𝑁1
∑

𝑖=1
𝑇 𝑖
𝑥.𝑇

𝑖
𝑧 .𝑇

𝑖
𝑡 .𝑇

𝑖
𝑥𝑠
,
𝑁1
∑

𝑖=1
𝑇 𝑖
𝑥.𝑇

𝑖
𝑡 .𝑇

𝑖
𝑥𝑠
.𝛿𝑇 𝑖

𝑧) = 𝑏(
𝑁1
∑

𝑖=1
𝑇 𝑖
𝑥.𝑇

𝑖
𝑡 .𝑇

𝑖
𝑥𝑠
.𝛿𝑇 𝑖

𝑧) ∀𝛿𝑇 𝑖
𝑧 (28)

The associated multi-resolution algorithms are given in Algorithm
2 and 3. The first step consists in building 𝑁1 4-uplets for an initial
set of parameters. Then, only 𝑇 𝑝

𝑧 or 𝑇 𝑝
𝑡 are updated, and the other

functions are reused in the following calculations involving new sets
of parameters. The associated problem is 1D. If the residual error
remains high, only few new couples could be computed to achieve the
convergence in the so-called enrichment stage.

5. Numerical results

In this section, the following FE discretization is chosen: (i) a
classical 3-node quadratic FE for the thermal unknowns depending on
the 𝑥-axis coordinate and the 𝑥𝑠 location, (ii) a fourth-order layer-wise
description for the transverse direction.

Unsteady diffusion tests are presented evaluating the efficiency and

the properties of the algorithm and also validating our approach. To
Algorithm 2 Multi-resolution
First computation for a fixed initial set of parameters following
Algorithm 1.

𝑁1 4-uplets (𝑇 𝑝
𝑥 , 𝑇

𝑝
𝑧 , 𝑇

𝑝
𝑡 , 𝑇

𝑝
𝑥𝑠 ) are built.

Computation for a new set of parameters
update 𝑇 𝑝

𝑡 , 𝑝 = 1,… , 𝑁1 from Eq. (27)
Check for convergence
enrichment stage if needed (build new functions)

Algorithm 3 Multi-resolution
First computation for a fixed initial set of parameters following
Algorithm 1.

𝑁1 4-uplets (𝑇 𝑝
𝑥 , 𝑇

𝑝
𝑧 , 𝑇

𝑝
𝑡 , 𝑇

𝑝
𝑥𝑠 ) are built.

Computation for a new set of parameters
update 𝑇 𝑝

𝑧 , 𝑝 = 1,… , 𝑁1 from Eq. (28)
update 𝑇 𝑝

𝑡 , 𝑝 = 1,… , 𝑁1 from Eq. (27)
Check for convergence
enrichment stage if needed (build new functions)

this purpose, a laminated composite beam is addressed. A preliminary
test is first considered to illustrate the computation of the temperature
with the variable separation. The explicit solution with respect to
the location of the heat source allows us to build the temperature
field for any size using the superposition principle (see Appendix B).
The number of layers, the location of the heat source and the time
dependency of the loading can change. The approach is assessed by
comparing with 2D FEM solutions using a commercial code. A multi-
resolution approach is performed to take into account the modification
of such parameters.

The main characteristics of the test cases are summarized as follows:

geometry: composite beam made of several layers with 𝐿 = 1 m. All
layers have the same thickness. 𝑆 = 𝐿

ℎ
= 4.

boundary conditions: Temperature is imposed on two edges (𝜃 = 0
at 𝑧 = −ℎ∕2, 𝜃 = 0 at 𝑥 = 0) or on all edges. Different heat
sources on 𝐼1 = [0.3, 0.4], 𝐼2 = [0.35, 0.4], 𝐼3 = [0.38, 0.4] with a
stepped or a ramped variation are considered (see Fig. 3). We
have 𝜙0 = 6000 W m−2.

aterial properties:

𝜆11 = 𝜆311 = 5 W m−1 K−1;

𝜆13 = 𝜆33 = 0.5 W m−1 K−1

𝜆21 = 0.5 W m−1 K−1; 𝜆23 = 5 W m−1 K−1

𝜌 = 10 kg m−3; 𝑐𝑝 = 1 J kg−1 K−1

esh: A 1D mesh for the x-functions with 𝑁𝑥 = 200 elements

ime problem : time domain [0, 𝑡𝑚𝑎𝑥] with 𝑡𝑚𝑎𝑥 = 0.4 s; The number of
time steps : 𝑁𝑡 = 350

umerical layers: 𝑁𝑧 is the total number of numerical layers. We
have 𝑁𝑧 = 𝑁𝐶 (number of layers).

eference values: results are computed using the Ansys software. In
the subsequent numerical results, the distribution of the tem-
perature/heat flux along the thickness or the beam axis is such
that the results path goes through the center of the heat source.



Fig. 3. Heat source intensity versus time.
Fig. 4. Error rate with respect to the number of 4-uplets - NC = 3 layers - 𝐼3 = [0.38, 0.4] - heat source in layer 2/3.
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It is denoted �̄�𝑠 and �̄�(𝑖)𝑠 in the 𝑖th layer. Two error indicators are
used:

𝐸𝑟𝑟𝑜𝑟𝑥𝑧 = 100

√

√

√

√

√

√

√

√

∫𝑥
∫𝑧

(𝑇 (𝑥, 𝑧, 𝑡𝑚𝑎𝑥) − 𝑇 𝑟𝑒𝑓 (𝑥, 𝑧, 𝑡𝑚𝑎𝑥))2 𝑑𝑧𝑑𝑥

∫𝑥
∫𝑧

𝑇 𝑟𝑒𝑓 (𝑥, 𝑧, 𝑡𝑚𝑎𝑥)2𝑑𝑧𝑑𝑥

(29)

𝐸𝑟𝑟𝑜𝑟𝑡 = 100

√

√

√

√

√

√

√

√

√

∫𝑥
∫

𝑡𝑚𝑎𝑥

0
(𝑇 (𝑥, �̄�, 𝑡) − 𝑇 𝑟𝑒𝑓 (𝑥, �̄�, 𝑡))2 𝑑𝑡𝑑𝑥

∫𝑥
∫

𝑡𝑚𝑎𝑥

0
𝑇 𝑟𝑒𝑓 (𝑥, �̄�, 𝑡)2𝑑𝑡𝑑𝑥

(30)

for a given value of 𝑧 = �̄�

5.1. Preliminary test case

A first test case is carried out to assess the accuracy and the behavior
of the method. A three-layer composite beam is submitted to a heat
source in the layer 2 or 3. A ramped loading is considered as shown in
 m
Fig. 3(b). A nil temperature is imposed on two edges. Different sizes
of heat source (in the axial direction) are addressed, but only the most
severe case (𝐼3) is presented below.

Firstly, a convergence study is carried out. Once the 4-uplets are
built for a heat source in the layer 2 or 3 at any locations, the
distribution of the temperature over the whole structure and for the
whole time domain can be deduced for a given size of the heat source.
A small domain 𝐼3 is taken for the presented results. For the two types
of error indicators (Eq. (29) and Eq. (30)), the convergence of the PGD

ethod is rather monotonous (see Fig. 4).
In the following, 60 functions are built to compute the solution.
The distributions of temperature along the 𝑥-axis and the thickness

re given in Fig. 5 and Fig. 6, respectively. It can be inferred from these
igures that the accuracy of the results is very good despite the localized
oading. The steep temperature gradient is well-captured (heat source
n the middle layer, Fig. 5(a)). For further assessment, the distribution
f the heat flux along the thickness is shown in Fig. 7. The results
re very satisfactory. The use of a higher-order expansion through the
hickness is justified as the variation of the heat flux along the 𝑧-axis
s not linear. It can be also noticed that the distributions are rather
ifferent depending on the position of the heat source. The distribution
f the temperature over the whole beam given in Fig. 9 and Fig. 10
llows also us to illustrate that. Finally, the variation of the temperature
ersus time is plotted in Fig. 8. It shows the capability of the present

ethod to perform unsteady diffusion analysis.



Fig. 5. Distribution of temperature along the beam length - 𝑡 = 𝑡𝑚𝑎𝑥 - NC = 3 layers - 𝐼3 = [0.38, 0.4] - heat source in layer 2/3.
Fig. 6. Distribution of temperature along the thickness at �̄�𝑠 - 𝑡 = 𝑡𝑚𝑎𝑥 - NC = 3 layers - 𝐼3 = [0.38, 0.4] - heat source in layer 2/3.
Fig. 7. Distribution of heat flux along the thickness at �̄�𝑠 - 𝑡 = 𝑡𝑚𝑎𝑥 - NC = 3 layers - 𝐼3 = [0.38, 0.4] - heat source in layer 2/3.
a

5.2. Multi-resolution approach

In this section, we take advantages of both the explicit expression
of the temperature with respect to the heat source location and also
the variables separation to deduce an approach well-suited to perform
numerous computations involving different configurations. Hereafter,
different parameters can be changed :

• Modification of the temporal variation of the heat source (value
of 𝑡𝑟)

• Modification of the position of the heat source (through the
thickness)

• Modification of the number of layers
 T
• Simultaneous modifications of the number of layers/heat source
location/time dependence of the heat source

First, an initial computation is carried out to build the functions
(𝑇 𝑖

𝑥, 𝑇
𝑖
𝑧 , 𝑇

𝑖
𝑥𝑠, 𝑇

𝑖
𝑡 ) associated to a given configuration. It is described in

each test case. For the present study, 60 functions are built. Then, these
functions are used in the subsequent computations with a new set of
parameters as described below. Thus, the new computations have a low
computational cost as it is reduced to update only 1D functions, as 𝑇 𝑖

𝑧

nd 𝑇 𝑖
𝑡 for our applications. The process is given in Algorithm 2 and 3.

he results are illustrated in the following.
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Fig. 8. Distribution of temperature with respect to the time - NC = 3 layers - 𝐼3 = [0.38, 0.4] - heat source in layer 2/3.
Fig. 9. Distribution of temperature over the beam at 𝑡 = 𝑡𝑚𝑎𝑥 - NC = 3 layers - 𝐼3 = [0.38, 0.4] - heat source in layer 2.
Fig. 10. Distribution of temperature over the beam at 𝑡 = 𝑡𝑚𝑎𝑥 - NC = 3 layers - 𝐼3 = [0.38, 0.4] - heat source in layer 3.
5
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.2.1. Modification of 𝑡𝑟
In this example, the initial basis is built for 𝑡𝑟 = 0.1 s and a nil

emperature is imposed on all edges. The heat source is localized in
ayer 3. Due to the type of modification, only the time functions 𝑇𝑡 are
pdated for the new value of 𝑡𝑟 = 0.15 s. The distribution of temperature
ith respect to the time and along the thickness, and the transverse heat

lux through the thickness are shown on Fig. 11. The agreement with
he reference solution is very good.
 t
.2.2. Modification of the heat source location
The same test case as in Section 5.2.1 is considered. The initial

asis involves a heat source in layer 2. Then, a new analysis is carried
ut with a heat source in layer 3. First, the 𝑇 𝑖

𝑧 functions are updated.
rom Fig. 12 and Fig. 13, it can be noticed that it is insufficient to
btain accurate results (dotted line). The value of the error indicator
𝑟𝑟𝑜𝑟𝑥𝑧 is about 28%. Then, it is also needed to update the 𝑇 𝑖

𝑡 functions
o deduce distribution of temperature and transverse heat flux in a very
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Fig. 11. Multi-resolution (only 𝑇𝑡 updated) - ramped 𝑡𝑟 = 0.15 s - 3 layers - 𝐼3 = [0.38, 0.4] - heat source in layer 3.
Fig. 12. Multi-resolution (𝑇𝑧, then 𝑇𝑡 updated) - initial heat source in layer 2–3 layers - 𝐼3 = [0.38, 0.4] - heat source in layer 3 - ramped.
Fig. 13. Multi-resolution (𝑇𝑧, then 𝑇𝑡 updated) - initial heat source in layer 2–3 layers
𝐼3 = [0.38, 0.4] - heat source in layer 3 - ramped.

ood agreement with the reference solution (full line). The error rate
ecreases to about 4%.

.2.3. Modification of the number of layers
In this section, a modification of the number of layers is consid-

red. Thus, the localization and the height of the heat source change.
he initial basis is related to a three-layer beam with a heat source

n layer 2. A nil temperature is prescribed on two edges. The new
omputation involves 6 layers with a heat source in layer 4. This new
onfiguration does not induce any difficulties as only the z-problem and
he integration over the thickness are involved owing to the variables
eparation. As previously, the z-functions are naturally updated, but a
ignificant error rate remains (about 37%). Thus, the time functions are
lso updated. From Fig. 14 and Fig. 15, we can see that the through-
hickness and axial distribution of the temperature is very close to the
nsys reference solution. The variation of the temperature with respect

o time is also very accurate. Despite the significant difference on the
istributions on thermal quantities between the initial configuration
and the current one, the present method allows us to obtain very
satisfactory results.

5.2.4. Modification of the number of layers/heat source location/time
dependence of the heat source

To illustrate the wide range of validity of the multi-resolution
approach, both geometry and heat source characteristics are changed.
The initial configuration is described as : (i) geometry : 3 layers, (ii)
heat source : located in layer 2 with a stepped time variation as in
Fig. 3(a). The new configuration involves : (i) geometry : 6 layers, (ii)
heat source : located in layer 4 with a ramped time variation as in
Fig. 3(b), with 𝑡𝑟 = 0.1 s.

The temperature is imposed on two edges.
The strategy consists in updating both the z-functions, then the time

functions. First of all, the first nine z-functions and time functions are
shown in Fig. 17 and Fig. 16, respectively, for the initial configuration
and the new one. We clearly see the influence of the new characteristics
of the test case. The location and the size of the heat source has an
important influence on the 𝑇 𝑖

𝑧 functions as it can be expected. A high
variation occurs through the layer where the heat source is applied.
Then, Fig. 18 and Fig. 19 show the accuracy of the strategy. Again,
we notice that the computation of the z-functions and time functions
is sufficient. Moreover, only two 1D problems have to be solved for a
new configuration. Thus, the efficiency of the method is very good.

Remark. For the test cases involved in the present section, the updating
of the two functions 𝑇𝑧 and 𝑇𝑡 is sufficient to achieve an accurate so-
lution. If needed, few new 4-uplets can be easily computed to improve
the temperature field.

5.3. Comments about computational cost

The computational complexity of the present multi-resolution
method is evaluated. It is compared with a classical approach in which
a whole Layer-Wise computation is carried out for each new set of
parameters. By assuming a direct band solver to solve these two types
of methods, the estimation gives:

9 (𝑁 .𝐷 )3.𝑁𝐷 .𝑁
• Classical LayerWise Approach: ∼ 2 𝑧 𝑧 𝑥 𝑡
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Fig. 14. Multi-resolution (𝑇𝑧, then 𝑇𝑡 updated) - initial configuration: 3 layers with a heat source in layer 2 - final configuration: 6 layers with a heat source in layer 4 - 𝐼1 = [0.3, 0.4]
ramped.
a
b

Fig. 15. Multi-resolution (𝑇𝑧, then 𝑇𝑡 updated) - initial configuration: 3 layers with a
eat source in layer 2 - final configuration: 6 layers with a heat source in layer 4 -
1 = [0.3, 0.4] - ramped.

• PGD approach computation time for the 𝑇𝑡 problem: ∼ 1
2𝑁

3
4𝑢𝑝𝑁𝑡

• PGD approach computation time for the 𝑇𝑧 problem:
∼ 1

2 (𝑁𝑧.𝐷𝑧)3𝑁3
4𝑢𝑝

where 𝐷𝑧 is the order of expansion of the unknowns with respect to
z, 𝑁𝑧 the number of numerical layers, 𝑁𝐷𝑥 the number of nodes in
the x direction, 𝑁𝑡 the number of time steps and 𝑁4𝑢𝑝 is the number of
4-uplets built in the PGD process. A high number of sets of parameters
is considered, thus, the initial computation cost of the first basis is

neglected. This estimation is suitable when the number of nodes 𝑁𝐷𝑥
nd 𝑁𝑧 are high. So, the most important gain of the PGD approach will
e made when 9𝑁𝐷𝑥.𝑁𝑡 ≫ 𝑁3

4𝑢𝑝 and 9𝐷3
𝑧 .𝑁

3
𝑧 .𝑁𝐷𝑥 ≫ 𝑁3

4𝑢𝑝. The most
important gain of the multiresolution approach will be made when the
time and spatial discretization will be refined.

6. Conclusion

In the present study, a multi-resolution strategy based on a vari-
able separation is performed to model laminated composite beams for
unsteady diffusion problems. On the one hand, an explicit solution
with respect to the heat source location is built. The solution for any
size and location of the heat source can be easily computed with
a low computational cost. On the other hand, the basis built for a
given configuration can be reused to analyze new test cases. The
computations involve only one or two 1D problems to be solved. It
allows us to extend the application fields of the method (any temporal
evolution of the heat source, location in the thickness of the structure,
other composite laminates). The method is assessed by comparing
with reference solutions, and the results are very satisfactory. Finally,
this strategy avoids to perform numerous analyses for a fixed set of
parameters in an iterative process framework (identification, inverse
problems, reliability ...).
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Fig. 16. Multi-resolution (𝑇𝑧, then 𝑇𝑡 updated) - initial configuration: 3 layers, constant heat source in layer 2 - final configuration: 6 layers, heat source in layer 4 with stepped
time variation - 𝐼2 = [0.38, 0.4].
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Fig. 17. Multi-resolution (𝑇𝑧, then 𝑇𝑡 updated) - initial configuration: 3 layers, constant heat source in layer 2 - final configuration: 6 layers, heat source in layer 4 with stepped
time variation - 𝐼2 = [0.38, 0.4].
Fig. 18. Multi-resolution (𝑇𝑧, then 𝑇𝑡 updated) - initial configuration: 3 layers, constant heat source in layer 2 - final configuration: 6 layers, heat source in layer 4 with stepped
time variation - 𝐼2 = [0.38, 0.4].
A

Fig. 19. Multi-resolution (𝑇𝑧, then 𝑇𝑡 updated) - initial configuration: 3 layers, constant
eat source in layer 2 - final configuration: 6 layers, heat source in layer 4 with stepped
ime variation - 𝐼2 = [0.38, 0.4].

ppendix A. Matrices related to the discretized problems

.1. Ordinary differential equation to be solved on [0, 𝑡𝑚𝑎𝑥]

𝐴(�̃�𝑥, �̃�𝑧, �̃�𝑥𝑠 ) = ∫ �̃� 2
𝑥𝑠
𝑑𝑥𝑠 ∫ 𝜌𝑐𝑝�̃�

2
𝑧 𝑑𝑧 ∫ �̃� 2

𝑥 𝑑𝑥 (A.1)

𝑥𝑠 𝑧 𝑥
𝐵(�̃�𝑥, �̃�𝑧, �̃�𝑥𝑠 ) = ∫𝑥𝑠

�̃� 2
𝑥𝑠
𝑑𝑥𝑠 ∫𝑥

𝑥(�̃�𝑥)𝑇

×

[

∫𝑧

𝜮𝐳(�̃�𝑧)𝑇 𝝀𝜮𝐳(�̃�𝑧)𝑑𝑧

]

𝑥(�̃�𝑥) 𝑑𝑥 (A.2)

𝐶𝑟(𝑡, �̃�𝑥, �̃�𝑧, �̃�𝑥𝑠 ) = 𝑟𝑑 (𝑡) ∫𝑠𝑜𝑢𝑟𝑐𝑒
𝑧

�̃�𝑧 𝑑𝑧 ∫𝑥

�̃�𝑥𝑠 �̃�𝑥 𝑑𝑥

𝐶𝑚(𝑡, �̃�𝑥, �̃�𝑧, �̃�𝑥𝑠 , 𝜃
𝑚) =

𝑚
∑

𝑖=1
∫𝑥𝑠

�̃�𝑥𝑠𝑇
𝑖
𝑥𝑠
𝑑𝑥𝑠 ∫𝑧

𝜌𝑐𝑝�̃�𝑧𝑇
𝑖
𝑧𝑑𝑧

∫𝑥

�̃�𝑥𝑇
𝑖
𝑥 𝑑𝑥

𝜕𝑇 𝑖
𝑡

𝜕𝑡
𝑚
∑

𝑖=1
∫𝑥𝑠

�̃�𝑥𝑠𝑇
𝑖
𝑥𝑠
𝑑𝑥𝑠 ∫𝑥

𝑥(�̃�𝑥)𝑇

[

∫𝑧

𝜮𝐳(�̃�𝑧)𝑇 𝝀𝜮𝐳(𝑇 𝑖
𝑧)𝑑𝑧

]

𝑥(𝑇 𝑖
𝑥) 𝑑𝑥𝑇

𝑖
𝑡 (𝑡)

(A.3)

.2. FE problem to be solved on 𝑥

The matrices involved in Eq. (21) are given as:

𝝀𝑧𝑡𝑥𝑠 (�̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 ) = ∫

𝑡𝑚𝑎𝑥

0
�̃� 2
𝑡 𝑑𝑡 ∫𝑥𝑠

�̃� 2
𝑥𝑠
𝑑𝑥𝑠 ∫𝑧

𝜮𝐳(�̃�𝑧)𝑇 𝝀𝜮𝐳(�̃�𝑧)𝑑𝑧

+∫

𝑡𝑚𝑎𝑥

0
�̃�𝑡
𝜕�̃�𝑡
𝜕𝑡

𝑑𝑡 ∫𝑥𝑠

�̃� 2
𝑥𝑠
𝑑𝑥𝑠 ∫𝑧

𝜌𝑐𝑝�̃�
2
𝑧 𝑑𝑧

[

0 0
0 1

]

(A.4)



𝐐𝑟
𝑧𝑡𝑥𝑠

(�̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 ) = ∫𝑠𝑜𝑢𝑟𝑐𝑒
𝑧

�̃�𝑧 𝑑𝑧∫

𝑡𝑚𝑎𝑥

0
𝑟𝑑 (𝑡)�̃�𝑡 𝑑𝑡

[

0
�̃�𝑥𝑠

]

(A.5)

𝐐𝑚
𝑧𝑡𝑥𝑠

(�̃�𝑧, �̃�𝑡, �̃�𝑥𝑠 , 𝜃
𝑚) = ∫

𝑡𝑚𝑎𝑥

0 ∫𝑧
∫𝑥𝑠

𝐠𝐫𝐚𝐝(𝛿𝜃)𝑇 𝝀𝐠𝐫𝐚𝐝(𝜃𝑚)

+ 𝛿𝜃𝜌𝑐𝑝
𝜕𝜃𝑚

𝜕𝑡
𝑑𝑥𝑠𝑑𝑧𝑑𝑡 (A.6)

A.3. FE problem to be solved on 𝑧

The matrices involved in Eq. (16) are given as:

𝝀𝑥𝑡𝑥𝑠 (�̃�𝑥, �̃�𝑡, �̃�𝑥𝑠 ) = ∫

𝑡𝑚𝑎𝑥

0
�̃� 2
𝑡 𝑑𝑡

∫𝑥𝑠

�̃� 2
𝑥𝑠
𝑑𝑥𝑠 ∫𝑧

𝜮𝐱(�̃�𝑥)𝑇 𝝀𝜮𝐱(�̃�𝑥)𝑑𝑥

+∫

𝑡𝑚𝑎𝑥

0
�̃�𝑡
𝜕�̃�𝑡
𝜕𝑡

𝑑𝑡 ∫𝑥𝑠

�̃� 2
𝑥𝑠
𝑑𝑥𝑠 ∫𝑥

�̃� 2
𝑥 𝑑𝑥

[

𝜌𝑐𝑝 0
0 0

]

(A.7)

𝐐𝑟
𝑥𝑡𝑥𝑠

(�̃�𝑥, �̃�𝑡, �̃�𝑥𝑠 ) = ∫𝑥

�̃�𝑥�̃�𝑥𝑠 𝑑𝑥∫

𝑡𝑚𝑎𝑥

0
𝑟𝑑 (𝑡)�̃�𝑡 𝑑𝑡

[

1
0

]

(A.8)

𝐐𝑚
𝑥𝑡𝑥𝑠

(�̃�𝑥, �̃�𝑡, �̃�𝑥𝑠 , 𝜃
𝑚) = ∫

𝑡𝑚𝑎𝑥

0 ∫𝑥
∫𝑥𝑠

𝐠𝐫𝐚𝐝(𝛿𝜃)𝑇 𝝀𝐠𝐫𝐚𝐝(𝜃𝑚)

+ 𝛿𝜃𝜌𝑐𝑝
𝜕𝜃𝑚

𝜕𝑡
𝑑𝑥𝑠𝑑𝑥𝑑𝑡 (A.9)

Appendix B. Computation of the temperature with the superposi-
tion principle

The field 𝜃(𝑥, 𝑧, 𝑡, 𝑥𝑠) being computed, it is possible to deduce easily
the temperature for a heat source applied on a domain 𝐼𝑘 such that

𝑇 (𝑥, 𝑧, 𝑡) = ∫𝐼𝑘
𝜃(𝑥, 𝑧, 𝑡, 𝑥𝑠) 𝑑𝑥𝑠 =

𝑁
∑

𝑖=1
𝑇 𝑖
𝑥(𝑥)𝑇

𝑖
𝑧(𝑧)𝑇

𝑖
𝑡 (𝑡)∫𝐼𝑘

𝑇 𝑖
𝑥𝑠
(𝑥𝑠) 𝑑𝑥𝑠 (B.1)

References

[1] Boulanger T, Chrysochoos A, Mabru C, Galtier A. Calorimetric analysis of
dissipative and thermoelastic effects associated with the fatigue behavior of
steels.. Int J Fatigue 2004;26:221–9.

[2] Amiri M, Khonsari M. Life prediction of metals undergoing fatigue load based
on temperature evolution.. Mater Sci Eng A 2010;527:1555–9.

[3] Goidescu C, Welemane H, Garnier C, Fazzini M, Brault R, Péronnet E, Mistou S.
Damage investigation in cfrp composites using full-field measurement techniques:
Combination of digital image stereo-correlation, infrared thermography and x-ray
tomography. Composite Part B Eng J 2013;48:95–105.

[4] Libonati F, Vergani L. Damage assessment of composite materials by means of
thermographic analyses. Composite Part B Eng J 2013;50:82–90. http://dx.doi.
org/10.1016/j.compositesb.2013.01.012.

[5] Rittel D. On the conversion of plastic work to heat during high strain rate
deformation of glassy polymers. Mech Mater 1999;31(2):131–9. http://dx.doi.
org/10.1016/S0167-6636(98)00063-5.

[6] Wu Q, Yoshikawa N, Zhai H. Composite forming simulation of a three-
dimensional representative model with random fiber distribution. Comput Mater
Sci 2020;182:109780.

[7] Katunin A. Evaluation of criticality of self-heating of polymer composites by
estimating the heat dissipation rate. Mech Compos Mater 2018;54(1):53–60.

[8] Islam MZ, Ulven CA. A thermographic and energy based approach to define high
cycle fatigue strength of flax fiber reinforced thermoset composites. Compos Sci
Technol 2020;196:108233.
[9] Douellou C, Balandraud X, Duc E, Verquin B, Lefebvre F, Sar F. Rapid
characterization of the fatigue limit of additive-manufactured maraging steels
using infrared measurements. Addit Manuf 2020;35:101310. http://dx.doi.org/
10.1016/j.addma.2020.101310.

[10] Neely K, Galloway K, Strauss A. Soldered copper lap joints using reactive material
architectures as a heat source. Manuf Lett 2020;24:6–8.

[11] Tian J, Jiang K. Heat conduction investigation of the functionally graded
materials plates with variable gradient parameters under exponential heat source
load. Int J Heat Mass Transfer 2018;122:22–30.

[12] Munier R, Doudard C, Calloch S, Weber B. Determination of high cycle fatigue
properties of a wide range of steel sheet grades from self-heating measurements..
Int J Fatigue 2014;63:46–61.

[13] Cao M, Su Z, Xu H, Radzienski M, Xu W, Ostachowicz W. A novel damage
characterization approach for laminated composites in the absence of material
and structural information. Mech Syst Signal Process 2020;143:106831. http:
//dx.doi.org/10.1016/j.ymssp.2020.106831.

[14] Maier A, Schmidt R, Oswald-Tranta B, Schledjewski R. Non-destructive thermog-
raphy analysis of impact damage on large-scale cfrp automotive parts. Materials
2014;7(1):413–29.

[15] Colombo C, Bhujangrao T, Libonati F, Vergani L. Effect of delamination on
the fatigue life of gfrp: A thermographic and numerical study. Compos Struct
2019;218:152–61.

[16] Movahedi-Rad AV, Keller T, Vassilopoulos AP. Fatigue damage in angle-ply
gfrp laminates under tension-tension fatigue. Int J Fatigue 2018;109:60–9. http:
//dx.doi.org/10.1016/j.ijfatigue.2017.12.015.

[17] Ozisik M, Orlande H. Inverse heat transfer: fundamentals and applications. Crc
Press; 2000.

[18] Ammar A, Mokdada B, Chinesta F, Keunings R. A new family of solvers for some
classes of multidimensional partial differential equations encountered in kinetic
theory modeling of complex fluids. J Non-Newton Fluid Mech 2006;139:153–76.

[19] Ladevèze P. Sur une famille d’algorithmes en mécanique des structures. C R Acad
Sci, Paris II 1985;300(2):41–4.

[20] Pruliere E, Chinesta F, Ammar A, Leygue A, Poitou A. On the solution of the
heat equation in very thin tapes.. Int J Thermal Sci 2013;65:148–57.

[21] Favoretto B, de Hillerin C, Bettinotti O, Oancea V, Barbarulo A. Reduced
order modeling via pgd for highly transient thermal evolutions in additive
manufacturing. Comput Methods Appl Mech Engrg 2019;349:405–30. http://dx.
doi.org/10.1016/j.cma.2019.02.033.

[22] Ghnatios C, Masson F, Huerta A, Leygue A, Cueto E, Chinesta F. Proper gener-
alized decomposition based dynamic data-driven control of thermal processes..
Comput Methods Appl Mech Engrg 2012;213–216:29–41.

[23] Aguado J, Huerta A, Chinesta F, Cueto E. Real-time monitoring of
thermal processes by reduced-order modeling.. Int J Num Meth Eng
2015;102(5):991–1017.

[24] Berger J, Orlande HRB, Mendes N. Proper generalized decomposition model
reduction in the bayesian framework for solving inverse heat transfer problems.
Inverse Probl Sci Eng 2017;25(2):260–78. http://dx.doi.org/10.1080/17415977.
2016.1160395.

[25] Vidal P, Gallimard L, Polit O. Thermo-mechanical analysis of laminated com-
posite and sandwich beams based on a variables separation.. Compos Struct
2016;152:755–66. http://dx.doi.org/10.1016/j.compstruct.2016.05.082.

[26] Nouy A. A priori model reduction through proper generalized decomposition
for solving time-dependent partial differential equations. Comput Methods Appl
Mech Engrg 2010;199(23–24):1603–26.

[27] Chinesta F, Ammar A, Leygue A, Keunings R. An overview of the proper general-
ized decomposition with applications in computational rheology. J Non-Newton
Fluid Mech 2011;166(11):578–92.

[28] Chinesta F, Leygue A, Bognet B, Ghnatios C, Poulhaon F, Bordeu F, Barasinski A,
Poitou A, Chatel S, Maison-Le-Poec S. First steps towards an advanced simulation
of composites manufacturing by automated tape placement. Int J Mater Form
2014;7(1):81–92.

[29] Chinesta F, Ladevèze P. 3 proper generalized decomposition. In: Benner P,
Grivet-Talocia S, Quarteroni A, Rozza G, Schilders W, Silveira LM, editors.
Snapshot-Based Methods and Algorithms. Volume 2, De Gruyter; 2020, p.
97–138. http://dx.doi.org/10.1515/9783110671490-003.

[30] Białecki R, Kassab A, Fic A. Proper orthogonal decomposition and modal
analysis for acceleration of transient fem thermal analysis. Int J Num Meth Eng
2005;62(6):774–97.

[31] Bussy P, Rougée P, Vauchez P. The large time incremement method for numerical
simulation of metal forming processes. In: Proc. NUMETA. Elsevier; 1990, p.
102–9.

[32] Boisse P, Bussy P, Ladevèze P. A new approach in non-linear mechanics : the
large time increment method.. Int J Num Meth Eng 1990;29:647–63.

http://refhub.elsevier.com/S0263-8223(21)01083-7/sb1
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb1
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb1
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb1
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb1
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb2
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb2
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb2
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb3
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb3
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb3
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb3
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb3
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb3
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb3
http://dx.doi.org/10.1016/j.compositesb.2013.01.012
http://dx.doi.org/10.1016/j.compositesb.2013.01.012
http://dx.doi.org/10.1016/j.compositesb.2013.01.012
http://dx.doi.org/10.1016/S0167-6636(98)00063-5
http://dx.doi.org/10.1016/S0167-6636(98)00063-5
http://dx.doi.org/10.1016/S0167-6636(98)00063-5
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb6
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb6
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb6
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb6
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb6
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb7
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb7
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb7
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb8
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb8
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb8
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb8
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb8
http://dx.doi.org/10.1016/j.addma.2020.101310
http://dx.doi.org/10.1016/j.addma.2020.101310
http://dx.doi.org/10.1016/j.addma.2020.101310
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb10
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb10
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb10
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb11
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb11
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb11
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb11
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb11
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb12
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb12
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb12
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb12
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb12
http://dx.doi.org/10.1016/j.ymssp.2020.106831
http://dx.doi.org/10.1016/j.ymssp.2020.106831
http://dx.doi.org/10.1016/j.ymssp.2020.106831
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb14
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb14
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb14
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb14
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb14
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb15
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb15
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb15
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb15
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb15
http://dx.doi.org/10.1016/j.ijfatigue.2017.12.015
http://dx.doi.org/10.1016/j.ijfatigue.2017.12.015
http://dx.doi.org/10.1016/j.ijfatigue.2017.12.015
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb17
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb17
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb17
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb18
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb18
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb18
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb18
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb18
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb19
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb19
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb19
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb20
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb20
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb20
http://dx.doi.org/10.1016/j.cma.2019.02.033
http://dx.doi.org/10.1016/j.cma.2019.02.033
http://dx.doi.org/10.1016/j.cma.2019.02.033
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb22
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb22
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb22
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb22
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb22
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb23
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb23
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb23
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb23
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb23
http://dx.doi.org/10.1080/17415977.2016.1160395
http://dx.doi.org/10.1080/17415977.2016.1160395
http://dx.doi.org/10.1080/17415977.2016.1160395
http://dx.doi.org/10.1016/j.compstruct.2016.05.082
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb26
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb26
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb26
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb26
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb26
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb27
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb27
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb27
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb27
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb27
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb28
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb28
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb28
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb28
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb28
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb28
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb28
http://dx.doi.org/10.1515/9783110671490-003
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb30
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb30
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb30
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb30
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb30
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb31
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb31
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb31
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb31
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb31
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb32
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb32
http://refhub.elsevier.com/S0263-8223(21)01083-7/sb32

	Multi-resolution approach based on a variables separation method in unsteady thermal problem for composites
	Introduction
	Unsteady heat conduction problem description
	Heat conduction problem
	Thermal constitutive equation
	Heat transfer equation

	The weak form of the boundary value problem

	Application of the variable separation to the unsteady thermal analysis for a parametrized solution xs
	The parametrized problem
	The problem to be solved
	Discretization of the problem
	Finite element problem to be solved on Bz
	Ordinary differential equation to be solved on [0,tmax]
	Finite element problem to be solved on Bx
	Explicit solution on Bxs

	Multi-resolution strategy
	Numerical results
	Preliminary test case
	Multi-resolution approach
	Modification of tr
	Modification of the heat source location
	Modification of the number of layers
	Modification of the number of layers/heat source location/time dependence of the heat source

	Comments about computational cost

	Conclusion
	Declaration of competing interest
	Appendix A. Matrices related to the discretized problems
	Ordinary differential equation to be solved on [0,tmax]
	FE problem to be solved on Bx
	FE problem to be solved on Bz

	Appendix B. Computation of the temperature with the superposition principle
	References




