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Background and purpose: Considerable functional reorganization takes place in amyotrophic lateral 
sclerosis (ALS) in face of relentless structural degenera-tion. This study evaluates functional 
adaptation in ALS patients with lower motor neuron predominant (LMNp) and upper motor 
neuron predominant (UMNp) dysfunction.
Methods: Seventeen LMNp ALS patients, 14 UMNp ALS patients and 14 controls participated in a 
functional magnetic resonance imaging study. Study-group-specific activation patterns were evaluated 
during preparation for a motor task. Connectivity analyses were carried out using the supplementary motor 
area (SMA), cerebellum and striatum as seed regions and correlations were explored with clinical measures.

Results: Increased cerebellar, decreased dorsolateral prefrontal cortex and decreased SMA activation were 
detected in UMNp patients compared to con-trols. Increased cerebellar activation was also detected in 
UMNp patients com-pared to LMNp patients. UMNp patients exhibit increased effective connectivity 
between the cerebellum and caudate, and decreased connectivity between the SMA and caudate and 
between the SMA and cerebellum when performing self-initiated movement. In UMNp patients, a positive 
correlation was detected between clinical variables and striato-cerebellar connectivity. Conclusions: Our 
findings indicate that, despite the dysfunction of SMA–striatal and SMA–cerebellar networks, cerebello-
striatal connectivity increases in ALS indicative of compensatory processes. The coexistence of circuits with 
decreased and increased connectivity suggests concomitant neurodegenerative and adaptive changes in 
ALS.

Introduction

Amyotrophic lateral sclerosis (ALS) is a relentlessly

progressive neurodegenerative condition. Whilst extra-

motor involvement is increasingly recognized [1], the

hallmark feature of ALS is the progressive degenera-

tion of the motor neuron system. One of the key

facets of clinical heterogeneity in ALS is the relative

proportion of upper and lower motor neuron

involvement which defines the clinical phenotype and

determines the disability profile and care needs of

patients.

Cortical motor neuron loss and motor cortex atro-

phy is a well-established feature of ALS [2], but

the ensuing functional reorganization is relatively

poorly characterized. Pre-symptomatic studies of ALS-

associated mutation carriers have highlighted that

considerable structural changes can be detected long

before symptom onset [3,4]. Functional imaging studies

of ALS suggest that a number of compensatory pro-

cesses take place in the face of progressive motor cortex

degeneration and activation patterns shift from the
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precentral gyrus to supplementary motor, pre-motor

and cerebellar regions during movement execution [5].

Despite the plethora of imaging studies in ALS [6],

most studies admix heterogeneous patient cohorts [7]

without stratifying them based on their genotype, cog-

nitive profile or upper motor neuron (UMN) versus

lower motor neuron (LMN) predominance [8,9]. Exist-

ing studies highlight increased cortical disease burden

in UMN predominant (UMNp) cohorts compared to

LMN predominant (LMNp) patients [10,11]. In addi-

tion to cortical alterations, increased basal ganglia and

cerebellar involvement has been noted in UMNp

cohorts [12,13]. Structural magnetic resonance imaging

(MRI) studies have consistently highlighted focal corti-

cal [14], subcortical [15,16] and cerebellar [17] degenera-

tion. The vast majority of functional MRI (fMRI)

studies in ALS have focused on the execution phase of

a motor task. Preparation for a motor task is seldom

studied specifically despite evidence of impaired prepa-

ration for hand movements from event-related poten-

tial techniques [18] and blood flow alterations during

movement planning in positron emission tomography

studies [19]. In healthy populations movement prepara-

tion typically involves the premotor area [20], cerebel-

lum [21] and basal ganglia [22].

The primary objective of this study is to character-

ize functional reorganization in a cohort of ALS

patients stratified for UMN versus LMN disease bur-

den. Based on recent imaging studies [10–12,23], it

was hypothesized that UMNp patients exhibit consid-

erable motor system reorganization compared to

LMNp patients.

Methods

This study was approved by the institutional research

board of the CPP Ile-de-France Paris VI. Thirty-one

patients with ALS and 14 age- and gender-matched

healthy controls gave informed consent to participate

in this study. Based on standardized clinical evalua-

tion [24,25], ALS patients were divided into two sub-

groups: a UMNp cohort (n = 14) and an LMNp

group (n = 17) (Table 1). Inclusion criteria included

‘definite’ or ‘probable’ ALS according to the revised

El Escorial criteria [26], age between 18 and 70 years,

right-handedness. Exclusion criteria included frank

frontotemporal dementia based on current diagnostic

criteria [27], coexisting musculoskeletal conditions that

would have interfered with functional evaluation, and

contraindications to MRI.

All participants underwent standardized clinical

examination on the day of imaging. Functional

impairment was evaluated by the revised ALS Func-

tional Rating Scale (ALSFRS-r). Disease progression

rate was calculated as (48 � ALSFRS-r)/disease dura-

tion (months). All participants underwent a compre-

hensive neuropsychological evaluation including tests

for memory, executive, language and visio-spatial

domains (Table 1).

Magnetic resonance imaging

Magnetic resonance imaging data were acquired on a

3-T Siemens Prisma platform. T1-weighted structural

images were acquired with a magnetization-prepared

rapid acquisition gradient echo sequence with repeti-

tion time (TR)/echo time (TE) = 2300/4.2 ms, inver-

sion time 900 ms and isotropic 1 9 1 9 1 mm voxel

size. Functional images were obtained using a single-

shot echo-planar imaging (EPI) sequence with TR/

TE = 2020/27 ms; flip angle = 78°; field of

view 198 9 198 mm2. An event-related motor para-

digm was implemented to assess the activation corre-

lates of movement preparation. The instructions were

clearly explained before starting the fMRI experiment

and subjects were asked to perform simultaneous

right/left ankle dorsiflexion. Participants were

instructed to prepare mentally for the movement

before executing the motor task. The subjects were

asked to perform a series of ankle dorsiflexions based

on a specific number displayed on the presentation

screen (1, 3, 4). The number of movements requested

to prepare for was randomly intermixed in the experi-

ment.

Magnetic resonance imaging data processing

Functional MRI analyses were performed using the

Statistical Parametric Mapping SPM12 suite (UCL,

Wellcome Centre for Human Neuroimaging, London,

UK). In each dataset, for T1 equilibrium the first four

volumes were discarded. All EPI volumes were cor-

rected to adjust for within-volume time differences

and then realigned with the last volume to correct for

head movements. Functional scans were subsequently

spatially normalized against the standard stereotactic

MNI space. Spatial smoothing was performed with an

8 mm full width half maximum Gaussian kernel. Hae-

modynamic responses to task were modelled with a

canonical haemodynamic response function and its

first order temporal derivative [28]. The temporal devi-

ation allows the measurement of brain activity prior

to movement. It is a good indicator of movement

preparation activities [20].

Functional MRI data were analysed for each partic-

ipant separately on a voxel-by-voxel basis using the

general linear model approach for time series. A con-

trast between motor preparation and rest was



calculated for each participant. A one-sample t test

model was used to identify the activation during

movement preparation within each group [P < 0.05,

family-wise error (FWE) corrected]. Then, a two-sam-

ple t test was used to explore differences between the

UMNp versus LMNp cohorts and UMNp versus

healthy controls during motor preparation (P < 0.05,

FWE corrected).

Three a priori seed regions were defined: the supple-

mentary motor area (SMA), striatum and cerebellum,

which are established hubs of movement preparation

[21,22]. Anatomical masks of the SMA, striatum and

cerebellum were created using the Automated

Anatomical Labeling (AAL) atlas of the SPM Wake

Forest University (WFU) PickAtlas toolbox. The cere-

bellar mask included lobule VI and crus I of the cere-

bellum, and the striatum mask included the caudate

and putamen as defined in the AAL atlas in the WFU

PickAtlas toolbox (Wake Forest University Health

Sciences, Winston-Salem, NC, USA). The cerebellar

regions of interest (ROIs) crus I and lobule VI were

selected because of their established association with

motor planning and preparation [29], and because of

their role in self-initiated movement [30].

For each participant, extracted haemodynamic time

series from seed regions were deconvoluted and the

resulting neuronal time series (physiological variable)

were combined with the onset times of each stimulus

presented under the movement preparation condition

and rest (psychological variables) to derive the interac-

tion term (source signal 9 experimental context). To

test for differences in regression slopes between the two

experimental conditions, a general linear model was

generated with this interaction term as the explanatory

variable. The resulting individual t-contrast images

were entered into a random effects group analysis and

Table 1 The demographic and clinical profile of study participants

Healthy

controls (n = 14)

UMN predominant

ALS patients (n = 14)

LMN predominant

ALS patients (n = 17) P value

Age (years) 63.0 (57.0–66.0) 59.0 (20.0–71.0) 62.0 (31.0–74.0) 0.39

Gender (female/male) 5/9 3/10 6/11 0.29

Height (cm) 170 (168–175) 171 (157–187) 176 (154–186) 0.34

Weight (kg) 74.5 (66.0–83.7) 67.2 (53.0–90.0) 66.0 (54.0–86) 0.45

Disease onset

Upper limb N/A 3 3 0.37

Lower limb 7 10 0.58

Bulbar 4 4 0.81

ALSFRS-r (max 48) N/A 37.5 (35.2–41.0) 40.0 (33.0–46.0) 0.07

Disease duration (months) N/A 23.5 (14.7–37.2) 15.0 (07.0–80.0) 0.73

Disease progression rate N/A 0.58 (0.12–1.1) 0.46 (0.09–1.0) 0.13

Cognitive assessment

California verbal learning test II CVLT II

Immediate recall N/A 07.0 (04.0–13.0) 06.0 (04.0–10.0) 0.16

Total trial recall (1–5) 57.0 (35.0–68.0) 52.0 (38.0–69.0) 0.32

Short delay free recall 12.0 (09.0–16.0) 12.0 (07.0–16.0) 0.21

Short delay cued recall 01.0 (0–13.0) 02.0 (0–16.0) 0.48

Long delay free recall 14.0 (11.0–16.0) 14.0 (09.0–16.0) 0.41

Long delay cued recall 01.0 (0–13.0) 01.0 (0–16.0) 0.25

Total recognition discrimination 16.0 (13.0–16.0) 16.0 (0–16.0) 0.27

Stroop test

Reading N/A 99.5 (46.0–117) 92.0 (41.0–123.0) 0.23

Naming 73.5 (34.0–84.0) 64.0 (40.0–80.0) 0.13

Double task 38.5 (24.0–53.0) 37.0 (17.0–50.0) 0.33

Verbal fluency test

Phonemic N/A 25.0 (03.0–40.0) 18.0 (09.0–38.0) 0.46

Semantic 31.0 (16.0–51.0) 32.0 (10.0–45.0) 0.44

Wisconsin card sorting test

Categories achieved N/A 06.0 (01.0–06.0) 06.0 (03.0–06.0) 0.36

Perseverative errors 07.0 (0–31.0) 09.5 (05.0–17.0) 0.22

03.0 (0–11.0) 04.0 (01.0–09.0) 0.38

Digit span

Forward N/A 08.0 (04.0–11.0) 07.0 (04.0–13.0) 0.49

Backwards 05.0 (04.0–08.0) 04.0 (02.0–10.0) 0.34

ALS, amyotrophic lateral sclerosis; ALSFRS-r, revised ALS Functional Rating Scale; LMN, lower motor neuron; N/A, not applicable; UMN,

upper motor neuron. Values are presented as median (range) for functional scores followed by the minimum and the maximum values. Disease

progression = (48 � ALSFRS-r score)/disease duration. All patients were on riluzole therapy.



tested for statistical significance at P < 0.05 (FWE cor-

rected). A one-sample t test analysis was used to iden-

tify the connectivity of each seed area (striatum, SMA,

cerebellum) for each group (P < 0.05, FWE corrected).

Then, a two-sample t test analysis was used to explore

the difference of connectivity between patients and con-

trols in each index area (P < 0.05, FWE corrected).

Finally, in order to evaluate the biomarker potential of

the network metrics, whether clinical measures such as

disability scores, disease duration and progression rates

correlate with connectivity measures between cortical

regions was explored.

The FreeSurfer image analysis suite (Martinos Cen-

ter for Biomedical Imaging, Massachusetts General

Hospital, Boston, MA, USA) was used for cortical

thickness and volume measurements. Study groups

were first compared at a ‘whole brain’ level using

FreeSurfer’s QDEC application. A general linear

model was used with age and gender as covariates

and false discovery rate corrections were applied. In a

supplementary analysis, ROI volumetric and thickness

analyses were carried out on cortical measures from

atlas-defined regions. The labels of the Desikan–Kil-

liany and Destrieux atlases were used to define the fol-

lowing cortical regions: primary motor cortex,

paracentral gyrus, superior frontal gyrus, caudal mid-

dle frontal gyrus, SMA and the primary sensory cor-

tex. Average cortical volume and thickness were

retrieved from the above regions and compared in

ANCOVAs using age and gender as covariates.

Results

The UMNp and LMNp groups are matched in age,

ALSFRS-r subscores, disease duration, progression

rates and cognitive performance (Table 1).

Brain activation patterns

During self-initiated movement preparation, UMNp

patients exhibit decreased activation compared to

healthy controls in the right SMA, left SMA, right

dorsolateral prefrontal cortex and superior frontal

gyrus (Fig. 1). Conversely, UMNp patients activate

supplementary cortical regions in contrast to controls

in the cerebellum, right crus II, right crus I and left

lobule VI (Fig. 2). UMNp patients also present

enhanced activation compared to LMNp patients in

the left vermis VII, right lobule VI and left precuneus

(Fig. 3). No significant differences were identified in

activation patterns between healthy controls and

LMNp patients.

Effective connectivity

Compared to controls, UMNp patients show signifi-

cantly decreased SMA–striatal and SMA–cerebellar
connectivity. They also exhibit decreased effective con-

nectivity between the SMA and cerebellum compared

to LMNp patients, in particular in connection with

crus I and crus II.

Figure 1 Regional activation in healthy

controls compared to UMNp ALS

patients during movement preparation.

DLPFC, dorsolateral prefrontal cortex;

SMA, supplementary motor area; SFG,

superior frontal gyrus (P < 0.05 FWE).

Figure 2 Increased activation in UMNp

patients compared to controls during

movement preparation (P < 0.05 FWE).



Compared to controls, UMNp patients present sig-

nificantly decreased connectivity between the striatum

and SMA and between the striatum and Brodmann

area 10. However, UMNp patients show increased

connectivity between the striatum and crus I, as well

as between the striatum and the superior parietal lob-

ule. Whilst UMNp patients show reduced connectivity

between the striatum and middle frontal gyrus com-

pared to LMNp patients, they exhibit increased con-

nectivity between the striatum and the cerebellum

(lobule VI) as well as the striatum and the right tem-

poral cortex.

Compared to healthy controls, UMNp patients

showed significantly decreased connectivity between

the cerebellum and frontopolar prefrontal cortex

(Brodmann area 10) and between the cerebellum and

posterior cingulate cortex. In contrast, UMNp

patients exhibit increased connectivity between the

cerebellum and caudate and between the cerebellum

and precuneus (Table 2). Compared to the LMNp

cohort, the UMNp group shows decreased connectiv-

ity between the cerebellum and SMA and increased

connectivity between the cerebellum and caudate, and

between the cerebellum and thalamus (Tables 2 and

3). No significant differences were detected in ROI

effective connectivity between healthy controls and the

LMNp group.

Correlation analyses

A positive correlation was identified between clinical

variables and the effective connectivity between the

striatum and cerebellum in the UMNp cohort. A

negative association was detected between clinical

scores and the effective connectivity between the cere-

bellum and superior frontal gyrus and between the

cerebellum and middle temporal gyrus. In the LMNp

cohort, positive correlations were identified between

clinical variables and the SMA to striatum connectiv-

ity and disease severity/disease duration and SMA

to cerebellum connectivity. Negative correlations

were detected between disease severity/disease dura-

tion and SMA to anterior cingulate connectivity

(Tables S1 and S2).

Figure 3 Patterns of increased activation

in UMNp patients compared to LMNp

patients during movement preparation

(P < 0.05).

Table 2 The functional connectivity profile of UMNp patients during movement initiation compared to controls

Seed region Target region Side BA x y z t pFWE

SMA

HC > UMNp Caudate Left * �18 �31 19 4.08 0.01

Right * 3 5 13 3.35 0.03

Cerebellum lobule IV–V Right * 12 �40 �11 3.77 0.02

Striatum

HC > UMNp SMA Right 6 21 17 52 2.74 0.04

Superior frontal gyrus Right 10 30 65 4 2.9 0.04

UMNp > HC Crus I Left * �42 �70 �35 3.68 0.02

Superior parietal lobule Left 7 �24 �58 61 2.84 0.04

Cerebellum (crus I, lobule VI)

HC > UMNp Posterior cingulate Left 30 �21 �55 10 2.80 0.04

Middle frontal gyrus Right 10 27 53 �11 2.73 0.04

UMNp > HC Caudate Left * �15 5 16 4.00 0.02

Precuneus Right 7 3 �61 61 2.84 0.04

Differences in effective connectivity between upper motor neuron predominant (UMNp) ALS patients and healthy controls (HC). BA, Brod-

mann area; SMA, supplementary motor area. In the Side column, Left and Right refer to left hemisphere and right hemisphere. Coordinates

(x, y, z) are provided in MNI space. t and pFWE are P values corrected for multiple comparisons. *Not available



Structural analyses

Standard whole-brain comparisons of the UMNp

cohort versus controls and the UMNp cohort versus

the LMNp cohort for cortical thickness and volumes

did not reach significance following false discovery

rate corrections for multiple comparisons and adjust-

ments for age and gender. ROI analyses, however,

revealed group differences in the right hemisphere.

The right paracentral gyrus exhibited volumetric

(P = 0.05) and thickness (P = 0.049) reduction in the

UMNp cohort compared to the LMNp group. A

trend (P = 0.075) of cortical thickness reduction was

also observed in the right precentral gyrus of UMNp

patients compared to LMNp patients following

adjustments for age and gender. The UMNp cohort

exhibited significant (P = 0.024) right precentral gyrus

volume reductions compared to healthy controls. No

intergroup differences were observed in the other cor-

tical ROIs.

Discussion

Whilst the functional reorganization of cortical and

subcortical motor areas in ALS during movement exe-

cution is relatively well established [31–33], the func-

tional correlates of movement preparation are poorly

characterized in ALS. Our findings confirm that

LMNp patients exhibit similar activation patterns to

healthy controls and do not show increased activation

with reference to UMNp patients. Interestingly, our

results indicate that UMNp patients exhibit altered

premotor activation during movement preparation not

only in comparison to controls but also in contrast to

LMNp patients. Reduced activation in premotor

regions during motor tasks is consistent with previous

reports [23,34]. Imaging [35] and postmortem studies

[36] have previously described premotor cortex pathol-

ogy in ALS, but few of these studies have stratified

the patients based on UMN/LMN involvement.

Standard whole-brain structural analyses did not

capture differences in cortical thickness or cortical vol-

umes between UMNp and LMNp patients, yet their

functional activation patterns and connectivity profiles

are strikingly different. The divergence of structural

and functional imaging profiles suggests that func-

tional changes may precede frank structural atrophy

[37]. Another interpretation is that fMRI has greater

detection sensitivity to early motor network changes

than structural MRI [38]. The correlations between

clinical and connectivity metrics highlight the putative

biomarker value of network integrity metrics, which

may be superior to structural imaging indices [39].

With the increasing use of machine learning applica-

tions in ALS [40–43], the evaluation of connectivity

indices is particularly important.

The functional reorganization of motor control has

been previously linked to the recruitment of struc-

turally less affected areas in ALS [5,12]. We observed

increased striato-cerebellar connectivity in our UMNp

cohort during movement preparation. Cerebellar and

striatal pathways play a role in the pre-programming

of movements [44] and represent anatomical hubs to

fine-tune gross motor functions. Both structures are

highly interconnected and convey both motor and

cognitive functions [45]. Despite the comparable dis-

ability and structural profile of the two patient

groups, fMRI has successfully captured differing

Table 3 Effective connectivity differences between LMNp and UMNp patients during movement initiation

Seed region Target region Side BA x y z t pFWE

SMA

LMNp > UMNp Crus 2 Left * �39 �67 �38 3.84 0.01

Crus 1 Right * 33 �64 �44 3.68 0.02

Striatum

LMNp > UMNp Middle frontal gyrus Right 6 36 2 61 2.96 0.04

UMNp > LMNp Declive (lobule VI) Left * �27 �55 �11 3.85 0.01

Middle temporal gyrus Right 37 54 �52 �8 3.22 0.03

Cerebellum (crus I, lobule VI)

LMNp > UMNp Postcentral gyrus Left 3 �30 �28 70 3.78 0.02

Medial frontal gyrus Left 6 �3 �16 70 3.51 0.02

UMNp > LMNp Thalamus Right * 9 �28 19 4.73 0.01

Caudate Left * �12 �28 22 4.69 0.01

Right * 12 14 13 4.30 0.01

Differences in effective connectivity between upper motor neuron predominant (UMNp) and lower motor neuron predominant (LMNp) ALS

patients. ALS, amyotrophic lateral sclerosis; BA, Brodmann area; SMA, supplementary motor area. In the Side column, Left and Right refer

to left hemisphere and right hemisphere. Coordinates (x, y, z) are presented in MNI space. t and pFWE are P values corrected for multiple

comparisons. *Not available



cortical activation patterns between our UMNp and

LMNp cohorts. Supplementary activation of subcorti-

cal areas and the increased striato-cerebellar connec-

tivity may represent adaptive mechanisms to

compensate for structural degeneration. The close

association between striato-cerebellar connectivity and

clinical variables may indicate that functional reorga-

nization underpins clinical performance.

Conclusions

This imaging study provides compelling evidence of

functional reorganization in ALS. Our findings sug-

gest that structurally less affected brain regions

increasingly contribute to the execution and plan-

ning of motor tasks. Our results also highlight that

stratifying patients based on UMN involvement

helps to reduce disease heterogeneity and capture

unifying activation patterns. The increased reliance

on subcortical structures and increased striato-cere-

bellar connectivity are likely to represent functional

adaptation.
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