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In this review, the authors describe the most recent functional imaging approaches used to explore and identify circuits within networks and model spatially and anatomically interconnected regions. After defining the concept of functional and effective connectivity, the authors describe various methods of identification and modeling of circuits within networks. The description of specific circuits in networks should allow a more realistic definition of dynamic functioning of the central nervous system which underlies various brain functions.

Introduction

Imaging can be used to locate the brain areas involved in various forms of motor behavior, attention, vision or emotion, self-awareness and awareness of others, but brain network modeling probably remains the greatest challenge in the field of imaging data analysis [START_REF] Stephan | Models of functional neiroimaging data[END_REF]. Neuroimaging first allowed researchers to describe the cortical and subcortical activity of regionally segregated functional regions during a variety of experimental or cognitive tasks. More recently, functional integration studies have described how these functionally special-ized areas, i.e., areas whose activity is temporally modi-fied, interact within a highly distributed neural network. By using functional magnetic resonance imaging (fMRI), which has become the method most commonly used to investigate human brain functions and define neural populations as distributed local networks transiently, linked by large-scale reciprocal dynamic connections [START_REF] Varela | The brainweb: Phase synchronization and large-scale integration[END_REF]. After defining the concept of functional and effective connectivity, various approaches to the identification and modeling of circuits into networks will be presented in order to more realistically define the dynamics of the central nervous system which underlies various cerebral functions. A distinction should be made between meth-ods that only consider correlations and ignore issues of causality and influence and methods that attempt to de-scribe or draw inferences concerning the direction of influence between regions. Methodological approaches to the study of connectivity using fMRI data may be broadly divided into those that are more data-driven and attempt to map connectivity in the whole brain and those that use prior knowledge or hypotheses-driven, limited to a restricted set of regions [START_REF] Marrelec | Exploring largescale brain networks in functional MRI[END_REF]. These two categories of analysis are described, as indicated below, as functional connectivity and effective connectivity, respectively [START_REF] Horwitz | Investigating the neural basis for functional and effective connectivity. Application to fMRI[END_REF][START_REF] Friston | Time-dependent changes in effective connectivity measured with PET[END_REF][START_REF] Kelly | Human functional neuroimaging of brain changes associated with practice[END_REF]. Techniques in the first group that consider only correlations between regions include mapping using seed-voxel correlations. Techniques in the second group use more elaborate models and additional assumptions applied to calculate correlations or covariances to address questions about directional influences and include mapping based on structural equation modeling (SEM), multivariate autoregressive (MAR) modeling, dynamic causal modeling (DCM).

Functional and Effective Connectivity

The dichotomy between local and large-scale networks serves as a neural basis for the key assumption that brain functional architecture abides by two principles: functional segregation and functional integration [START_REF] Varela | The brainweb: Phase synchronization and large-scale integration[END_REF][START_REF] Marrelec | Exploring largescale brain networks in functional MRI[END_REF][START_REF] Horwitz | Neural modeling, functional brain imaging, and cognition[END_REF]. A large-scale brain network can be defined as a set of segregated and integrated regions that share strong anatomical connections and functional interactions. Whether top-down or bottom-up, connections and interactions are quintessential aspects of networks [START_REF] Mesulam | From sensation to cognition[END_REF][START_REF] Bressler | Large-scale cortical networks and cognition[END_REF]. Cognitive and sensorimotor processes depend on complex dynamics of temporally and spatially segregated brain activities. While the segregation principle states that some functional processes specifically engage well-localized and specialized brain regions, it is now thought that brain functions are most likely to emerge through integration of information flows across widely distributed regions [START_REF] Varela | The brainweb: Phase synchronization and large-scale integration[END_REF][START_REF] Tononi | Complexity and coherence: Integrating information in the brain[END_REF][START_REF] Sporns | Organization, development and function of complex brain networks[END_REF]. According to this approach, it is not only isolated brain areas that are presumed to process informa-system that conforms to a dynamic system will depend on the history of its input.

Data-Driven Approaches

The first category of methods includes seed-voxel correlations, Granger causality derived autoregressive models [START_REF] Goebel | Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping[END_REF], fuzzy clustering which assumes that brain voxels can be grouped into clusters sharing similar activity patterns [START_REF] Baumgartner | Comparison of two exploratory data analysis methods for fMRI: Fuzzy clustering vs. principal component analysis[END_REF][START_REF] Baumgartner | Resampling as a cluster validation technique in fMRI[END_REF][START_REF] Baumgartner | Quantification in functional magnetic resonance imaging: Fuzzy clustering vs. correlation analysis[END_REF], hierarchical clustering [START_REF] Cordes | Hierarchical clustering to measure connectivity in fMRI resting-state data[END_REF][START_REF] Goutte | On clustering fMRI time series[END_REF], psychophysiologic interactions which test for changes in the regression slope of activity at every voxel on a seed voxel that are induced by an experimental manipulation [START_REF] Friston | Psychophysiological and modulatory interactions in neuroimaging[END_REF], and spectral analysis [START_REF] Fall | Assessment of brain interactivity in the motor cortex from the concept of functional connectivity and spectral analysis of fMRI data[END_REF][START_REF] Sun | Measuring temporal dynamics of functional networks using phase spectrum of fMRI data[END_REF][START_REF] Muller | On multivariate spectral analysis of fMRI time series[END_REF]. Other techniques, such as principal component analysis [START_REF] Friston | Functional connectivity: The principal-component analysis of large (PET) data sets[END_REF][START_REF] Andersen | Principal component analysis of the dynamic response measured by fMRI: A generalized linear systems framework[END_REF][START_REF] Bullmore | Functional magnetic resonance image analysis of a large-scale neurocognitive network[END_REF] and independent component analysis (ICA) [START_REF] Karunanayaka | Age-related connectivity changes in fMRI data from children listening to stories[END_REF][START_REF] Correa | Performance of blind source separation algorithms for fMRI analysis using a group ICA method[END_REF][START_REF] Calhoun | Latency (in) sensitive ICA. Group independent component analysis of fMRI data in the temporal frequency domain[END_REF][START_REF] Jafri | A method for functional network connectivity among spatially independent resting-state components in schizophrenia[END_REF], suppose that fMRI data are a linear mixing of a given number of temporal factors with an associated factor-specific spatial distribution. Among all of these methods, we propose to briefly describe the ICA method (time analysis of the BOLD response) and the spectral method (frequency analysis of the time response) that are two interesting methods to spatially identify circuits within networks in the brain.

Independent Component Analysis

Independent component analysis (ICA) is a data-based multivariate statistical technique that uses higher order statistics to perform decomposition of linearly combined statistically independent sources [START_REF] Hyvärinen | Fast and robust fixed-point algorithms for independent component analysis[END_REF]. Each statistically independent component represents a hemodynamic map of the whole brain. Each independent component is supposed to describe a particular functional activity of the brain with its deployment over time [START_REF] Esposito | Spatial independent component analysis of functional MRI time-series: To what extent do results depend on the algorithm used?[END_REF][START_REF] Beckmann | Probabilistic independent component analysis for functional magnetic resonance imaging[END_REF][START_REF] Mckeown | Independent com-ponent analysis of fMRI data: Examining the assumptions[END_REF]. Each independent component extracted by applying a spatial ICA is spatially independent of all other independent components [START_REF] Jafri | A method for functional network connectivity among spatially independent resting-state components in schizophrenia[END_REF]. Therefore, the contribution of a spatial independent component to each voxel is given by the independent component magnitude at that point modulated over time by the associated time-course. The main advantage of ICA is that it requires little knowledge about the nature of the data. The only necessary hypothesis concerns the presence of a sufficient amount of independent sources (temporal or spatial), which are linearly mixed. Conversely, one of the main drawbacks of ICA is the large amount of brain activations resulting from this kind of decomposition [START_REF] Mckeown | Analysis of fMRI data by blind separation into independent spatial components[END_REF]. At some point, hypotheses are necessary to select relevant from spurious activations.

For this reason, ICA can be used in conjunction with other well-established techniques [START_REF] Hu | Unified SPM-ICA for fMRI analysis[END_REF] or further information may be associated with the reference time-course, such as the spatial localization of activities [START_REF] Hong | Source density-driven independent component analysis approach for fMRI data[END_REF] and the covariate relation of independent component time-course tion but rather a large-scale network, i.e. a set of brain regions interacting in a coherent and dynamic way. Hence, according to the functional integration concept, cortical areas and therefore functions are integrated within specific dynamic networks.

This concept supposes the existence of a dynamic interaction between interconnected, active areas and that the brain areas are expressed as networks within integrated systems. In such a system, localized areas are included in networks which become dynamic according to the cognitive task. Brain areas underlie several functions and can belong successively to several different functional networks. In other words, a given brain area does not have a single function; its resources can be exploited in several different cognitive strategies. The principle of functional integration which is also known in the field of electrophysiology was used to analyze the event potentials obtained from multielectrode recordings [START_REF] Gerstein | Simultaneously recorded trains of action potentials: Analysis and functional interpretation[END_REF]. Thus, based on the functional integration principle, the relationships between several brain areas may be examined.

Effective connectivity, closer to the intuitive notion of a connection, can be defined as the influence that one neural system exerts over another, either at a synaptic level (synaptic efficacy) or a cortical level [START_REF] Friston | Functional and effective connectivity in neuroimaging: A synthesis[END_REF][START_REF] Mcintosh | Structural equation modeling and its application to network analysis in functional brain imaging[END_REF]. This approach emphasizes that determining effective connectivity requires a causal model of the interactions between the elements of the neural system of interest. In electrophysiology, there is a close relationship between effective connectivity and synaptic efficacy [START_REF] Aersten | Dynamics of activity and connectivity in physiological neuronal networks[END_REF]. Effective connectivity can be estimated from linear models to test whether a theoretical model seeking to explain a network of relationships can actually fit the relationships estimated from the observed data. In the case of fMRI, the theoretical model is an anatomically constrained model and the data are interregional covariances of activity [START_REF] Buchel | Assessing interactions among neuronal systems using functional neuroimaging[END_REF].

Consequently, effective connectivity represents the dynamic influence that cortical and subcortical regions exert on each other via a putative network of interdependent areas [START_REF] Friston | Time-dependent changes in effective connectivity measured with PET[END_REF][START_REF] Gerstein | Simultaneously recorded trains of action potentials: Analysis and functional interpretation[END_REF]. This approach might be based on linear time-invariant models that relate the time-course of experimentally controlled manipulations to BOLD signals in a voxel-specific fashion. Although various statistical models have been proposed [START_REF] Henson | Analysis of fMRI time series: Linear timeinvariant models, event-related fMRI, and optimal experimental design[END_REF], these standard models treat the voxels throughout the brain as isolated black boxes, whose input-output functions are characterized by BOLD responses evoked by various experimental conditions [START_REF] Stephan | Biophysical models of fMRI responses[END_REF]. fMRI provides simultaneous recordings of activity throughout the brain evoked by cognitive and sensorimotor challenges, but at the expense of ignoring temporal information, i.e., the history of the experimental task (input) or physiologic variable (signal). This is important, as interactions within the brain, whether over short or long distances, take time and are not instantaneous which is implicit within regression models. Furthermore, the instantaneous state of any brain nation of the structure of covariance and provides certain voxel-based parameters such as coherence which assesses the dependence between voxel signals [START_REF] Fall | Assessment of brain interactivity in the motor cortex from the concept of functional connectivity and spectral analysis of fMRI data[END_REF].

The spectral theory for multivariate time series has already been used in several fMRI studies [START_REF] Sun | Measuring temporal dynamics of functional networks using phase spectrum of fMRI data[END_REF][START_REF] Muller | On multivariate spectral analysis of fMRI time series[END_REF][START_REF] Marchini | A new statistical approach to detecting significant activation in funtional MRI[END_REF]. By using fMRI signals, these authors demonstrated that time domain approaches may be sufficiently susceptible to substantially high frequency artefacts, whereas the spectral domain is essentially resistant to these artefacts. They also demonstrated that the frequency-dependent correlation is higher than that measured in the temporal domain. In other fields of neuroscience, for instance in electroencephalography (EEG), coherence analysis is widely used to investigate correlated oscillatory activities between various areas in the brain [START_REF] Andrew | Event-related coherence as a tool for studying dynamic interaction of brain regions[END_REF][START_REF] Classen | Integrative visuomotor behavior is associated with interregionally coherent oscillations in the human brain[END_REF][START_REF] Andres | Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition[END_REF][START_REF] Rappelsberger | Probability mapping: Power and coherence analyses of cognitive processes[END_REF]. In magnetoencephalography (MEG), coherence analysis has also been demonstrated to be a useful technique in clinical studies for discriminating different rhythmic behaviors in various brain regions [START_REF] Locatelli | EEG coherence in Alzheimer's disease[END_REF][START_REF] Roc'h ; Besthorn | EEG coherence in Alzheimer disease[END_REF][START_REF] Besthorn | EEG coherence in Alzheimer disease[END_REF]. However, although the relationship between neuronal currents and hemodynamic response is poorly understood, simultaneous intracortical neural recordings and fMRI signals acquired in animals recently revealed a significant correlation between local field potential and vascular response [START_REF] Logothetis | Neurophysiological investigation of the basis of the fMRI signal[END_REF]. The feasibility of a correlation between the synchrony of low frequency BOLD fluctuations in functionally related brain regions and neuronal connections that facilitate coordinated activities has been demonstrated in various applications [START_REF] Haughton | Clinical application of basal regional cerebral blood flow fluctuation measurements by fMRI[END_REF][START_REF] Cordes | Mapping functionally related regions of brain with functional connectivity MR imaging[END_REF].

Hypothesis-Driven Approaches

The alternative to data-based approaches is to use a model that attempts to describe the relationships between a set of selected regions, in which region-specific measurements such as BOLD time series are extracted from whole-brain data prior to the connectivity modeling stage. This category includes structural equation modeling (SEM) [START_REF] Mcintosh | Structural equation modeling and its application to network analysis in functional brain imaging[END_REF][START_REF] Glabus | Interindividual differences in functional interactions among prefrontal, parietal and parahippocampal regions during working memory[END_REF][START_REF] Goncalves | Connectivity analysis with structural equation modelling: An example of the effects of voxel selection[END_REF][START_REF] Mcintosh | Network analysis of cortical visual pathways mapped with PET[END_REF][START_REF] Büchel | Assessing interactions among neuronal systems using functional neuroimaging[END_REF][START_REF] Taniwaki | Age-related alterations of the functional interactions within the basal ganglia and cerebellar motor loops in vivo[END_REF][START_REF] Craggs | Functional brain interactions that serve cognitive-affective processing during pain and placebo analgesia[END_REF], multivariate autoregressive (MAR) modeling [START_REF] Harrison | Multivariate autoregressive modeling of fMRI time series[END_REF][START_REF] Kim | Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data[END_REF], dynamic causal modeling (DCM) [START_REF] Penny | Comparing dynamic causal models[END_REF][START_REF] Penny | Modelling functional integration: A comparison of structural equation and dynamic causal models[END_REF][START_REF] Friston | Dynamic causal modeling[END_REF], generative models including neural mass models [START_REF] David | A neural mass model for MEG/EEG: Coupling and neuronal dynamics[END_REF][START_REF] David | Evaluation of different measures of functional connectivity using a neural mass model[END_REF] and large-scale neural models [START_REF] Horwitz | Relating fMRI and PET signals to neural activity by means of large-scale neural models[END_REF][START_REF] Husain | Relating neuronal dynamics for auditory object processing to neuroimaging activity: A computational modeling and an fMRI study[END_REF][START_REF] Tagamets | Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study[END_REF].

Structural Equation Modelling

Path analysis, also referred to as structural equation modeling (SEM), was originally developed in the early 1970s by Jöreskog, Keesling, and Wiley, when they combined factor analysis with econometric simultaneous equation models [START_REF] Loehlin | Latent variable models: An introduction to factor, path, and structural analysis[END_REF][START_REF] Jöreskog | LISREL 8.5 user's reference guide[END_REF][START_REF] Bollen | With new incremental structural index for general equation models made[END_REF][START_REF] Bollen | Testing structural equation models[END_REF]. In the early 1990s, McIntosh introduced SEM to neuroimaging [START_REF] Mcintosh | Structural equation modeling and its application to network analysis in functional brain imaging[END_REF][START_REF] Mcintosh | Network analysis of cortical visual pathways mapped with PET[END_REF][START_REF] Mcintosh | Understanding neural interactions in learning and memory using function neuroimaging[END_REF][START_REF] Mcintosh | Structural modeling of functional neural pathways mapped with 2-deoxyglucose; effects of acoustic startle habituation on the auditory system 7[END_REF][START_REF] Mcintosh | Network interactions among limbic cortices, basal forebrain, and cerebellum differentiate a tone conditioned as a Pavlovian excitor or inhibitor: Fluorodeoxyglucose mapping and covariance structural modeling[END_REF] for modeling, testing, and comparison of directional effective connectivity of the brain. SEM rapidly became popular in this field [START_REF] Bullmore | Functional magnetic resonance image analysis of a large-scale neurocognitive network[END_REF][START_REF] Glabus | Interindividual differences in functional interactions among prefrontal, parietal and parahippocampal regions during working memory[END_REF][START_REF] Büchel | The predictive value of changes in effective connectivity for human learning[END_REF][START_REF] Büchel | Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling and fMRI[END_REF][START_REF] Bullmore | How good is good enough in path analysis of fMRI data?[END_REF][START_REF] Fletcher | Learning-related neuronal responses in prefrontal cortex studied with functional neuroimaging[END_REF][START_REF] Grafton | Network analysis of motor system connectivity in Parkinson's disease: Modulation of thalamocortical interactions after pallidotomy[END_REF][START_REF] Honey | Effects of verbal working memory load on corticocortical connectivity modeled by path analysis of functional magnetic resonance imaging data[END_REF][START_REF] Jennings | Mapping neural interactivity onto regional activity: An analysis of semantic processing and response mode interactions[END_REF]. Structural models can be used to analyze linear relationships between variables [START_REF] Mckeown | Detection of consistently task-related activations in fMRI data with hybrid independent component analysis[END_REF]. ICA could be combined with SEM to extend the explanatory power of each technique. SEM is a well developed, computationally minimally intensive connectivity analysis technique suitable for neuroimaging data, especially when it is combined with other data-driven methods such as ICA. In this case, SEM coupled with ICA is capable to handle data from a large number of subjects [START_REF] Karunanayaka | Age-related connectivity changes in fMRI data from children listening to stories[END_REF]. The biological relevance and cortical connections of the SEM models have also been evaluated with reference to available knowledge based on animal and human circuitries. The main advantage of spatial group ICA is its ability to identify the distinct functional elements involved in the circuitry [START_REF] Correa | Performance of blind source separation algorithms for fMRI analysis using a group ICA method[END_REF]. Functionally connected brain regions encompassed in each independent component are active at the same time, suggesting that one or more anatomical connections are in use during performance of the task. Although this reasoning is more in line with the "connectionist" approach to brain functions based on parallel processing mechanisms performed by a group of connected functional elements, the ICA approach lacks a statistical method to model the functional connections assumed to exist between regions. The addition of ICA to SEM can address this issue. Each ICA map or part of the map corresponds to one component in an SEM.

Spectral Analysis

The description of a correlation structure in the frequency domain can be a promising approach to investigate interregional strengths of interactions of a functional network. As time-dependent correlations may vary between fMRI signals and across the space independently of the underlying neural dynamics, a method of analysis of frequency-dependent correlations would be one way to overcome this interregional variability of the BOLD response and would also be crucial for extracting the fine detail of information hidden within the fMRI signal. Functional connectivity analysis in the presence of major physiologic noise sources is a pitfall especially when the correlation (or covariance) between BOLD signals is performed in the time domain. In this case, these noise sources may artificially increase the magnitude of cross-correlation. Estimation of coherence between pairs of voxels at a specific frequency or at a limited range of frequencies can therefore be one way to deal with noxious physiologic noise.

The frequency domain approach can be used to analyze a limited range of linear relationships within a restricted frequency band [START_REF] Sun | Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data[END_REF]. Consequently, measurement of the correlation between fMRI data can be enhanced and can help to resolve the problem of false connectivity derived from cardiac and respiratory cycles and/or vascular differences. This approach can be performed by using spectral analysis, which allows exami-cortical or subcortical areas and reveals relationships, interdependencies and covariance between the various areas. In a given anatomical model, SEM shows the effects of an experimental task on a specific network of connections [START_REF] Mcintosh | Structural equation modeling and its application to network analysis in functional brain imaging[END_REF][START_REF] Buchel | Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling and fMRI[END_REF][START_REF] Horwitz | The elusive concept of brain connectivity[END_REF][START_REF] Gonzalez-Lima | Analysis of neural network interactions related to associative learning using structural equation modeling[END_REF]. In this type of statistical analysis, normalized variables are considered in terms of the structure of their covariances. SEM therefore allows inference of interregional dependencies between various cerebral cortical areas.

SEM is a simple and pragmatic approach to effective connectivity when dynamic aspects can be disregarded. A linear model is sufficient and the observed variables can be measured precisely, the input is unknown but stochastic and stationary. SEM comprises a set of regions and a set of directed connections. Importantly, a causal relationship is ascribed to these connections. Causal relationships are therefore not inferred from the data, but are assumed a priori. The strengths of connections can therefore be set so as to minimize the discrepancy between observed and implied correlations and thereby fit a model to the data. Changes in connectivity can be attributed to experimental manipulation by partitioning the data set. If, for example, a given fMRI data set is partitioned into those scans obtained for different levels of an experimental factor, differences in connectivity can then be attributed to that factor leading to the conclusion that a pathway has been activated. An SEM with particular connection strengths implies a particular set of instantaneous correlations between regions. Structural equation models posit a set of theoretical causal relationships between variables and model instantaneous correlations i.e., correlations between regions at the same time-point. Instantaneous activity is assumed to be the result of local dynamics and connections between regions.

Multivariate Autoregressive (MAR) Models

To overcome the difficulties of SEM, Harrison et al. proposed the use of multivariate autoregressive (MAR) models for the analysis of fMRI data [START_REF] Harrison | Multivariate autoregressive modeling of fMRI time series[END_REF]. They were the first to introduce multivariate autoregressive (MAR) models into brain pathway analyses to characterize interregional dependence. MAR models are time-series models and consequently model temporal order within measured brain activity. Goebel et al. [START_REF] Goebel | Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping[END_REF] and Roebroeck et al. [START_REF] Roebroeck | Mapping directed influence over the brain using Granger causality and fMRI[END_REF] subsequently generalized the MAR approach by incorporating Granger causality between two time series. MAR models posit a set of causal relationships between variables; they incorporate cross-covariances between regions (covariances at multiple lags) and exploit temporal relationships between different scans to allow conclusions about predominant directions of influence between regions as well as their strength [START_REF] Stephan | Biophysical models of fMRI responses[END_REF][START_REF] Korhonen | Linear multivariate models for physiological signal analysis: Theory[END_REF][START_REF] Korhonen | Multivariate autoregressive model with immediate transfer paths for assessment of interactions between cardiopulmonary variability signals[END_REF]. from analysis of the covariance among the variables. Structural models were developed from two principal methods of analyses: factorial analysis (for a review: [START_REF] Bollen | With new incremental structural index for general equation models made[END_REF]) and multiple regression or causal path analysis (a method developed in the 1930s by Wright e.g., (for a review: [START_REF] Hollander | Nonparametric statistical methods[END_REF]). Structural models examine multiple sources of influence on the dependent variable in an experiment [START_REF] Kline | Principles and practice of structural equation modeling (methodology in the social sciences)[END_REF][START_REF] Byrne | Structural equation modeling with Amos: BASIC concepts, applications, and programming[END_REF].

Structural Equation Modeling (SEM) is a hypothesis-based multivariate statistical technique of data analysis that can be used with neuroimaging data. An increasing number of PET, fMRI and transcranial magnetic stimulation (TMS) studies have used SEM to investigate large-scale functional brain networks [START_REF] Marrelec | Using partial correlation to enhance structural equation modeling of functional MRI data[END_REF][START_REF] Marrelec | Large-scale neural model validation of partial correlation analysis for effective connectivity investigation in functional MRI[END_REF][START_REF] Rogers | Assessing functional connectivity in the human brain by fMRI[END_REF][START_REF] Rogers | Comment on 'Assessing functional connectivity in the human brain by fMRI[END_REF] and show specific networks involved in either working memory [START_REF] Au Duong | Modulation of effective connectivity inside the working memory network in patients at the earliest stage of multiple sclerosis[END_REF][START_REF] Glabus | Interindividual differences in functional interactions among prefrontal, parietal and parahippocampal regions during working memory[END_REF][START_REF] Schlosser | Assessing the working memory network: Studies with functional magnetic resonance imaging and structural equation modeling[END_REF][START_REF] Schlosser | Altered effective connectivity during working memory performance in schizophrenia: A study with fMRI and structural equation modeling[END_REF][START_REF] Kondo | Functional roles of the cingulo-frontal network in performance on working memory[END_REF][START_REF] Krause | Imaging and neural modeling in episodic and working memory processes[END_REF][START_REF] Charlton | A structural equation modeling investigation of age-related variance in executive function and DTI measured white matter damage[END_REF], attentional processes [START_REF] Kim | Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data[END_REF][START_REF] Rowe | Attention to action: Specific modulation of corticocortical interactions in humans[END_REF][START_REF] Mottaghy | Systems level modeling of a neuronal network subserving intrinsic alertness[END_REF][START_REF] Erickson | A structural equation modeling analysis of attentional control: An event-related fMRI study[END_REF], face perception [START_REF] Rajah | Frontotemporal interactions in face encoding and recognition[END_REF][START_REF] De Marco | Changes in effective connectivity during incidental and intentional perception of fearful faces[END_REF][START_REF] Stein | A validated network of effective amygdala connectivity[END_REF], motor movement processing [START_REF] Taniwaki | Age-related alterations of the functional interactions within the basal ganglia and cerebellar motor loops in vivo[END_REF][START_REF] Rogers | Hemispheric asymmetry in supplementary motor area connectivity during unilateral finger movements[END_REF][START_REF] Grafton | Network analysis of motor system connectivity in Parkinson's disease: Modulation of thalamocortical interactions after pallidotomy[END_REF][START_REF] Toni | Changes of cortico-striatal effective connectivity during visuomotor learning[END_REF][START_REF] Taniwaki | Functional network of the basal ganglia and cerebellar motor loops in vivo: Different activation patterns between self-initiated and externally triggered movements[END_REF][START_REF] Zhuang | Connectivity exploration with structural equation modeling: An fMRI study of bimanual motor coordination[END_REF][START_REF] Laird | Modeling motor connectivity using TMS/PET and structural equation modeling[END_REF], language [START_REF] Karunanayaka | Age-related connectivity changes in fMRI data from children listening to stories[END_REF][START_REF] Quaglino | Differences in effective connectivity between dyslexic children and normal readers during a pseudoword reading task: An fMRI study[END_REF][START_REF] Fu | Modulation of effective connectivity by cognitive demand in phonological verbal fluency[END_REF] or processing of painful stimuli [START_REF] Craggs | Functional brain interactions that serve cognitive-affective processing during pain and placebo analgesia[END_REF].

SEM methods, in comparison with classical approaches such as linear regression, allow simultaneous analysis of several types of interrelationships between variables in an experiment [START_REF] Friston | Functional and effective connectivity in neuroimaging: A synthesis[END_REF][START_REF] Horwitz | Neural modeling and functional brain imaging: An overview[END_REF][START_REF] Lee | A report of the functional connectivity[END_REF][START_REF] Mcintosh | Towards a network theory of cognition[END_REF]. The nature of the relationship between variables is given by the regression coefficient; it describes how much the dependent variable changes when an independent variable changes by one unit. SEM directly integrates measurement errors into a statistical model, so that estimates of regression coefficients are consequently more precise than with classical methods such as multiple regression, factorial analysis, or analysis of variance. The older methods examine only one linear relationship at the same time between independent and dependant variables and only within a range of values set by the investigator [START_REF] Mcintosh | Structural equation modeling and its application to network analysis in functional brain imaging[END_REF]. In contrast with classical methods, SEM analyzes a structure of variances and covariances in a dataset of observed variables and can be used to predict dependences between variables. In other words, SEM seeks to explain as much of the variance in dependant variables as it can from simultaneous measurement of the variances of the independent variables included in the model. Similarly, SEM incorporates measurement errors of the independent variables into calculation of the estimate, which reinforces the statistical power of the method and provides more precise estimates of regression coefficients. A model of measurement can therefore be validated from a theoretical model or empirical data [START_REF] Krause | Imaging and neural modeling in episodic and working memory processes[END_REF]. The objective of effective connectivity analysis is to estimate parameters that represent influences between regions that may change over time and with respect to experimental tasks.

In order to describe a functional network, network nodes and anatomical connections must therefore be proposed in conjunction with a SEM model to explain interregional covariances and determine the intensity of the connections. When applied to PET or fMRI data, SEM allows modeling of connection pathways between initially formulated by Buxton et al. [START_REF] Buxton | Dynamics of blood flow and oxygenation changes during brain activation: The balloon model[END_REF] and later extended by Friston et al. [START_REF] Friston | Nonlinear responses in fMRI: The Balloon model, Volterra kernels, and other hemodynamics[END_REF]. A Bayesian inference scheme is devised to infer the model parameters from the data. The mathematical framework of DCM takes into account nonlinearities and temporal correlations. It also quantifies the interaction strength that one brain region exerts on another brain region at the neuronal level, whereas SEM only concerns the observed BOLD signal. DCM is suspected to be less sensitive than SEM to the number of degrees of freedom. Unlike SEM, DCM also models the effect of experimental, external, and modulatory inputs on network dynamics. Since DCM models neurobiologically plausible neural activities and takes into account dynamics and modulations, this mathematical framework would appear to be more advantageous than SEM.

Diffusion Tensor Imaging

While fMRI provides detailed information about the spatial location of functionally active cortical areas, the question of anatomical interdependency between cortical areas remains elusive. A key tool to assess the validity of large-scale distributed networks in fMRI is knowledge of the underlying anatomical connections. The original idea behind SEM and functional neuroimaging was to combine two data sets: a functional set with an anatomical set (connections between regions), based on the assumption that anatomy was the source of spatial causal relationships. Our understanding of the connections between regions is limited, but since the advent of newer tractography methods, the main white matter tracts can be described. Diffusion Tensor Imaging (DTI) is a powerful MRI technique [START_REF] Basser | Diffusion-tensor MRI: Theory, experimental design and data analysis-a tech-nical review[END_REF][START_REF] Basser | Estimation of the effective self-diffusion tensor from the NMR spin echo[END_REF] that can be used to translate self-diffusion, or microscopic motion of water molecules in tissue into a MRI measure of tissue integrity and structure (white matter fibers). Data from diffusion tensor imaging (DTI) and fMRI have been combined in a few previous studies [START_REF] Werring | The structural and functional mechanisms of motor recovery: Complementary use of diffusion tensor and functional magnetic resonance imaging in a traumatic injury of the internal capsule[END_REF][START_REF] Werring | A direct demonstration of both structure and function in the visual system: Combining diffusion tensor imaging with functional magnetic resonance imaging[END_REF][START_REF] Wieshmann | Combined functional magnetic resonance imaging and diffusion tensor imaging demonstrate widespread modified organization in malformation of cortical development[END_REF]. These studies showed that a combination of techniques can give additional information about brain organization which may give more specific information about organization of brain functions and brain injuries. In this latter case, a DTI-driven SEM would integrate information about white matter changes (e.g. maturation, aging) [START_REF] Charlton | A structural equation modeling investigation of age-related variance in executive function and DTI measured white matter damage[END_REF][START_REF] Olesen | Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network[END_REF]. The prospect of using information derived from tractography could be used to constrain structural models. DTI and fMRI combinations will be essential to discover to what extent the brain functional organization as investigated with fMRI reflects structural features of the brain and, hence, to more accurately assess the relevance of fMRI to examine the relationship between functional and large-scale anatomical networks. However, more studies are still needed to investigate anatomical correlates which would be related to effective connectivity.

An autoregressive approach is used to characterize a structure in a time series, whereby the current value of a time series is modeled as a weighted linear sum of previous values. Consecutive measurements within a given time series contain information about the process that generated this series. This is an autoregressive process and is a very simple, yet effective, approach to time series characterization. This is distinct from regression techniques that quantify instantaneous correlations, but is similar to the SEM model in that it estimates the relative influences over time. Autoregressive models of fMRI data address the temporal aspect of causality in a BOLD time series, focusing on the causal dependence of the present on the past. Each data point of a time series is explained as a linear combination of past data points. This approach contrasts with SEM regression-based models in which the time series can be permuted without changing the results. MAR models contain directed influences among a set of regions whose causal interactions, expressed at the BOLD level, are inferred via their mutual predictability from past time points.

Dynamic Causal Modeling

A major criticism of SEM or MAR with regard to neuroimaging data is that they model effective connectivity changes at the "hemodynamic level" rather than the "neuronal level". This is a serious problem because the causal architecture of the system that we want to identify is expressed in terms of neuronal dynamics, which are not directly observed using noninvasive techniques. In the case of fMRI data, previous models of effective connectivity have been fitted to the measured time series which result from a hemodynamic convolution of the underlying neural activity. Since classical statistical models do not include the forward model linking neuronal activity to the measured hemodynamic data, analyses of interregional connectivity performed on hemodynamic responses are problematic. For example, different brain regions can exhibit marked differences in neurovascular coupling, and these differences, expressed in different latencies (see above) may lead to false inferences about connectivity [START_REF] Stephan | Dynamic causal models of neural system dynamics: Current state and future extensions[END_REF].

Dynamical Causal Modeling (DCM) has recently been developed as a generalization of both convolution models and SEM [START_REF] Penny | Modelling functional integration: A comparison of structural equation and dynamic causal models[END_REF][START_REF] Friston | Dynamic causal modeling[END_REF]. As described in Penny et al. [START_REF] Penny | Modelling functional integration: A comparison of structural equation and dynamic causal models[END_REF], SEM can be shown to be a simplified version of DCM which also depends on the definition of a structural model. DCM model assumes a dynamic neuronal model of interacting brain regions, whereby neuronal activity in a given brain region causes changes in neuronal activity in other regions according to the structural model. This neuronal model is then supplemented with a forward model of how neuronal activity generates a measured BOLD response through the balloon model which was

Conclusions

This article describes the most recent imaging approaches used to explore and identify circuits within networks and to spatially and anatomically model interconnected regions. Structural equation modeling is the most widely used method to model effective connectivity [START_REF] Mcintosh | Structural equation modeling and its application to network analysis in functional brain imaging[END_REF][START_REF] Bullmore | How good is good enough in path analysis of fMRI data?[END_REF][START_REF] Gonzalez-Lima | Analysis of neural interactions related to associative learning using structural equation modeling[END_REF]. The relevance of applying SEM to fMRI neuroimaging data has been discussed in detail elsewhere [START_REF] Goncalves | Connectivity analysis with structural equation modelling: An example of the effects of voxel selection[END_REF][START_REF] Penny | Modelling functional integration: A comparison of structural equation and dynamic causal models[END_REF][START_REF] Bullmore | How good is good enough in path analysis of fMRI data?[END_REF][START_REF] Mechelli | Effective connectivity and intersubject variability: Using a multisubject network to test differences and commonalities[END_REF]. SEM allows one to start with simpler models and then progress to more complex models by repeatedly testing the model fit to real data. SEM is useful when some information is available, such as a small set of potential structural models or partial information concerning connectivity. Newer, more sophisticated effective connectivity analysis methods such as Dynamic Causal Modeling might circumvent the drawbacks of SEM and may shed more insight into how brain regions interact in information processing. Nevertheless, SEM is a well developed, computationally less intensive connectivity analysis technique suitable for neuroimaging data especially for block designs and combined with other methods such as independent component analysis, partial correlation or DTI. The use of SEM may be justified by the fact that, unlike DCM, the statistical model underlying SEM is quite simple and not computationally demanding.