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Abstract 

In this review, the authors describe the most recent functional imaging approaches used to explore and iden-
tify circuits within networks and model spatially and anatomically interconnected regions. After defining the 
concept of functional and effective connectivity, the authors describe various methods of identification and 
modeling of circuits within networks. The description of specific circuits in networks should allow a more 
realistic definition of dynamic functioning of the central nervous system which underlies various brain functions. 
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1. Introduction

Imaging can be used to locate the brain areas involved in 
various forms of motor behavior, attention, vision 
or emotion, self-awareness and awareness of others, 
but brain network modeling probably remains the 
greatest challenge in the field of imaging data 
analysis [1]. Neuroimaging first allowed researchers 
to describe the cortical and subcortical activity of 
regionally segregated functional regions during a 
variety of experimental or cognitive tasks. More 
recently, functional integration studies have 
described how these functionally special-ized areas, 
i.e., areas whose activity is temporally modi-fied, 
interact within a highly distributed neural network. By 
using functional magnetic resonance imaging (fMRI), 
which has become the method most commonly used 
to investigate human brain functions and define 
neural populations as distributed local networks 
transiently, linked by large-scale reciprocal dynamic 
connections [2]. After defining the concept of 
functional and effective connectivity, various 
approaches to the identification and modeling of circuits 
into networks will be presented in order to more 
realistically define the dynamics of the central 
nervous system which underlies various cerebral 
functions. A distinction should be made between 
meth-ods that only consider correlations and ignore 
issues of causality and influence and methods that 
attempt to de-scribe or draw inferences concerning 
the direction of influence between regions. 
Methodological approaches to the study of 
connectivity using fMRI data may be broadly divided 
into those that are more data-driven and attempt to map 
connectivity in the whole brain and those that use prior 
knowledge or hypotheses-driven, limited to 

  

a restricted set of regions [3]. These two categories of 
analysis are described, as indicated below, as functional 
connectivity and effective connectivity, respectively 
[4-6]. Techniques in the first group that consider only 
correlations between regions include mapping using 
seed-voxel correlations. Techniques in the second group 
use more elaborate models and additional assumptions 
applied to calculate correlations or covariances to ad-
dress questions about directional influences and include 
mapping based on structural equation modeling (SEM), 
multivariate autoregressive (MAR) modeling, dynamic 
causal modeling (DCM). 

2. Functional and Effective Connectivity

The dichotomy between local and large-scale networks 
serves as a neural basis for the key assumption that brain 
functional architecture abides by two principles: func-
tional segregation and functional integration [2,3,7]. A 
large-scale brain network can be defined as a set of seg-
regated and integrated regions that share strong ana-
tomical connections and functional interactions. Whether 
top-down or bottom-up, connections and interactions are 
quintessential aspects of networks [8,9]. Cognitive and 
sensorimotor processes depend on complex dynamics of 
temporally and spatially segregated brain activities. 
While the segregation principle states that some func-
tional processes specifically engage well-localized and 
specialized brain regions, it is now thought that brain 
functions are most likely to emerge through integration 
of information flows across widely distributed regions 
[2,10,11]. According to this approach, it is not only iso-
lated brain areas that are presumed to process informa-



system that conforms to a dynamic system will depend 
on the history of its input. 

3. Data-Driven Approaches

The first category of methods includes seed-voxel corre-
lations, Granger causality derived autoregressive models 
[19], fuzzy clustering which assumes that brain voxels 
can be grouped into clusters sharing similar activity pat-
terns [20–22], hierarchical clustering [23,24], psycho-
physiologic interactions which test for changes in the 
regression slope of activity at every voxel on a seed 
voxel that are induced by an experimental manipulation 
[25], and spectral analysis [26–28]. Other techniques, 
such as principal component analysis [29–31] and inde-
pendent component analysis (ICA) [32–35], suppose that 
fMRI data are a linear mixing of a given number of 
temporal factors with an associated factor-specific spatial 
distribution. Among all of these methods, we propose to 
briefly describe the ICA method (time analysis of the 
BOLD response) and the spectral method (frequency 
analysis of the time response) that are two interesting 
methods to spatially identify circuits within networks in 
the brain. 

3.1. Independent Component Analysis 

Independent component analysis (ICA) is a data-based 
multivariate statistical technique that uses higher order 
statistics to perform decomposition of linearly combined 
statistically independent sources [36]. Each statistically 
independent component represents a hemodynamic map 
of the whole brain. Each independent component is sup-
posed to describe a particular functional activity of the 
brain with its deployment over time [37–39]. Each inde-
pendent component extracted by applying a spatial ICA 
is spatially independent of all other independent compo-
nents [35]. Therefore, the contribution of a spatial inde-
pendent component to each voxel is given by the inde-
pendent component magnitude at that point modulated 
over time by the associated time-course. The main ad-
vantage of ICA is that it requires little knowledge about 
the nature of the data. The only necessary hypothesis 
concerns the presence of a sufficient amount of inde-
pendent sources (temporal or spatial), which are linearly 
mixed. Conversely, one of the main drawbacks of ICA is 
the large amount of brain activations resulting from this 
kind of decomposition [40]. At some point, hypotheses 
are necessary to select relevant from spurious activa-
tions.  

For this reason, ICA can be used in conjunction with 
other well-established techniques [41] or further infor-
mation may be associated with the reference time-course, 
such as the spatial localization of activities [42] and the 
covariate relation of independent component time-course 

tion but rather a large-scale network, i.e. a set of brain 
regions interacting in a coherent and dynamic way. 
Hence, according to the functional integration concept, 
cortical areas and therefore functions are integrated 
within specific dynamic networks.  

This concept supposes the existence of a dynamic in-
teraction between interconnected, active areas and that 
the brain areas are expressed as networks within inte-
grated systems. In such a system, localized areas are in-
cluded in networks which become dynamic according to 
the cognitive task. Brain areas underlie several functions 
and can belong successively to several different func-
tional networks. In other words, a given brain area does 
not have a single function; its resources can be exploited 
in several different cognitive strategies. The principle of 
functional integration which is also known in the field of 
electrophysiology was used to analyze the event poten-
tials obtained from multielectrode recordings [12]. Thus, 
based on the functional integration principle, the rela-
tionships between several brain areas may be examined. 

Effective connectivity, closer to the intuitive notion of 
a connection, can be defined as the influence that one 
neural system exerts over another, either at a synaptic 
level (synaptic efficacy) or a cortical level [13,14]. This 
approach emphasizes that determining effective connec-
tivity requires a causal model of the interactions between 
the elements of the neural system of interest. In electro-
physiology, there is a close relationship between effec-
tive connectivity and synaptic efficacy [15]. Effective 
connectivity can be estimated from linear models to test 
whether a theoretical model seeking to explain a network 
of relationships can actually fit the relationships esti-
mated from the observed data. In the case of fMRI, the 
theoretical model is an anatomically constrained model 
and the data are interregional covariances of activity 
[16]. 

Consequently, effective connectivity represents the 
dynamic influence that cortical and subcortical regions 
exert on each other via a putative network of interde-
pendent areas [5,12]. This approach might be based on 
linear time-invariant models that relate the time-course 
of experimentally controlled manipulations to BOLD 
signals in a voxel-specific fashion. Although various 
statistical models have been proposed [17], these stan-
dard models treat the voxels throughout the brain as iso-
lated black boxes, whose input-output functions are 
characterized by BOLD responses evoked by various 
experimental conditions [18]. fMRI provides simultane-
ous recordings of activity throughout the brain evoked by 
cognitive and sensorimotor challenges, but at the ex-
pense of ignoring temporal information, i.e., the history 
of the experimental task (input) or physiologic variable 
(signal). This is important, as interactions within the 
brain, whether over short or long distances, take time and 
are not instantaneous which is implicit within regression 
models. Furthermore, the instantaneous state of any 
brain 

   



nation of the structure of covariance and provides certain 
voxel-based parameters such as coherence which as-
sesses the dependence between voxel signals [26]. 

The spectral theory for multivariate time series has al-
ready been used in several fMRI studies [27,28,45]. By 
using fMRI signals, these authors demonstrated that time 
domain approaches may be sufficiently susceptible to 
substantially high frequency artefacts, whereas the spec-
tral domain is essentially resistant to these artefacts. 
They also demonstrated that the frequency-dependent 
correlation is higher than that measured in the temporal 
domain. In other fields of neuroscience, for instance in 
electroencephalography (EEG), coherence analysis is 
widely used to investigate correlated oscillatory activities 
between various areas in the brain [46–49]. In magne-
toencephalography (MEG), coherence analysis has also 
been demonstrated to be a useful technique in clinical 
studies for discriminating different rhythmic behaviors in 
various brain regions [50–52]. However, although the 
relationship between neuronal currents and hemody-
namic response is poorly understood, simultaneous in-
tracortical neural recordings and fMRI signals acquired 
in animals recently revealed a significant correlation 
between local field potential and vascular response [53]. 
The feasibility of a correlation between the synchrony of 
low frequency BOLD fluctuations in functionally related 
brain regions and neuronal connections that facilitate 
coordinated activities has been demonstrated in various 
applications [54,55]. 

4. Hypothesis-Driven Approaches

The alternative to data-based approaches is to use a 
model that attempts to describe the relationships between 
a set of selected regions, in which region-specific meas-
urements such as BOLD time series are extracted from 
whole-brain data prior to the connectivity modeling stage. 
This category includes structural equation modeling 
(SEM) [56–62], multivariate autoregressive (MAR) 
modeling [63,64], dynamic causal modeling (DCM) 
[65–67], generative models including neural mass mod-
els [68,69] and large-scale neural models [70–72]. 

4.1. Structural Equation Modelling 

Path analysis, also referred to as structural equation 
modeling (SEM), was originally developed in the early 
1970s by Jöreskog, Keesling, and Wiley, when they 
combined factor analysis with econometric simultaneous 
equation models [73–76]. In the early 1990s, McIntosh 
introduced SEM to neuroimaging [56,59,77–79] for 
modeling, testing, and comparison of directional effec-
tive connectivity of the brain. SEM rapidly became 
popular in this field [31,57,80–86]. Structural models can 
be used to analyze linear relationships between variables 

[43]. ICA could be combined with SEM to extend the 
explanatory power of each technique. SEM is a well de-
veloped, computationally minimally intensive connec-
tivity analysis technique suitable for neuroimaging data, 
especially when it is combined with other data-driven 
methods such as ICA. In this case, SEM coupled with 
ICA is capable to handle data from a large number of 
subjects [32]. The biological relevance and cortical con-
nections of the SEM models have also been evaluated 
with reference to available knowledge based on animal 
and human circuitries. The main advantage of spatial 
group ICA is its ability to identify the distinct functional 
elements involved in the circuitry [33]. Functionally 
connected brain regions encompassed in each independ-
ent component are active at the same time, suggesting 
that one or more anatomical connections are in use dur-
ing performance of the task. Although this reasoning is 
more in line with the “connectionist” approach to brain 
functions based on parallel processing mechanisms per-
formed by a group of connected functional elements, the 
ICA approach lacks a statistical method to model the 
functional connections assumed to exist between regions. 
The addition of ICA to SEM can address this issue. Each 
ICA map or part of the map corresponds to one compo-
nent in an SEM. 

3.2. Spectral Analysis 

The description of a correlation structure in the fre-
quency domain can be a promising approach to investi-
gate interregional strengths of interactions of a functional 
network. As time-dependent correlations may vary be-
tween fMRI signals and across the space independently 
of the underlying neural dynamics, a method of analysis 
of frequency-dependent correlations would be one way 
to overcome this interregional variability of the BOLD 
response and would also be crucial for extracting the fine 
detail of information hidden within the fMRI signal. 
Functional connectivity analysis in the presence of major 
physiologic noise sources is a pitfall especially when the 
correlation (or covariance) between BOLD signals is 
performed in the time domain. In this case, these noise 
sources may artificially increase the magnitude of 
cross-correlation. Estimation of coherence between pairs 
of voxels at a specific frequency or at a limited range of 
frequencies can therefore be one way to deal with nox-
ious physiologic noise.  

The frequency domain approach can be used to ana-
lyze a limited range of linear relationships within a re-
stricted frequency band [44]. Consequently, measure-
ment of the correlation between fMRI data can be en-
hanced and can help to resolve the problem of false con-
nectivity derived from cardiac and respiratory cycles 
and/or vascular differences. This approach can be per-
formed by using spectral analysis, which allows exami-



cortical or subcortical areas and reveals relationships, 
interdependencies and covariance between the various 
areas. In a given anatomical model, SEM shows the ef-
fects of an experimental task on a specific network of 
connections [14,118–120]. In this type of statistical 
analysis, normalized variables are considered in terms of 
the structure of their covariances. SEM therefore allows 
inference of interregional dependencies between various 
cerebral cortical areas. 

SEM is a simple and pragmatic approach to effective 
connectivity when dynamic aspects can be disregarded. 
A linear model is sufficient and the observed variables 
can be measured precisely, the input is unknown but 
stochastic and stationary. SEM comprises a set of regions 
and a set of directed connections. Importantly, a causal 
relationship is ascribed to these connections. Causal rela-
tionships are therefore not inferred from the data, but are 
assumed a priori. The strengths of connections can 
therefore be set so as to minimize the discrepancy be-
tween observed and implied correlations and thereby fit a 
model to the data. Changes in connectivity can be attrib-
uted to experimental manipulation by partitioning the 
data set. If, for example, a given fMRI data set is parti-
tioned into those scans obtained for different levels of an 
experimental factor, differences in connectivity can then 
be attributed to that factor leading to the conclusion that 
a pathway has been activated. An SEM with particular 
connection strengths implies a particular set of instanta-
neous correlations between regions. Structural equation 
models posit a set of theoretical causal relationships be-
tween variables and model instantaneous correlations i.e., 
correlations between regions at the same time-point. In-
stantaneous activity is assumed to be the result of local 
dynamics and connections between regions. 

4.2. Multivariate Autoregressive (MAR) Models 

To overcome the difficulties of SEM, Harrison et al. pro-
posed the use of multivariate autoregressive (MAR) 
models for the analysis of fMRI data [63]. They were the 
first to introduce multivariate autoregressive (MAR) 
models into brain pathway analyses to characterize in-
terregional dependence. MAR models are time-series 
models and consequently model temporal order within 
measured brain activity. Goebel et al. [19] and Roe-
broeck et al. [121] subsequently generalized the MAR 
approach by incorporating Granger causality between 
two time series. MAR models posit a set of causal relation-
ships between variables; they incorporate cross-covariances 
between regions (covariances at multiple lags) and ex-
ploit temporal relationships between different scans to 
allow conclusions about predominant directions of in-
fluence between regions as well as their strength [18, 
122,123]. 

from analysis of the covariance among the variables. 
Structural models were developed from two principal 
methods of analyses: factorial analysis (for a review: 
[75]) and multiple regression or causal path analysis (a 
method developed in the 1930s by Wright e.g., (for a 
review: [87]). Structural models examine multiple 
sources of influence on the dependent variable in an ex-
periment [88,89]. 

Structural Equation Modeling (SEM) is a hypothe-
sis-based multivariate statistical technique of data analy-
sis that can be used with neuroimaging data. An increas-
ing number of PET, fMRI and transcranial magnetic 
stimulation (TMS) studies have used SEM to investigate 
large-scale functional brain networks [90–93] and show 
specific networks involved in either working memory 
[94–100], attentional processes [64,101–103], face per-
ception [104–106], motor movement processing [61, 
107–112], language [32,113,114] or processing of pain-
ful stimuli [62]. 

SEM methods, in comparison with classical ap-
proaches such as linear regression, allow simultaneous 
analysis of several types of interrelationships between 
variables in an experiment [13,115–117]. The nature of 
the relationship between variables is given by the regres-
sion coefficient; it describes how much the dependent 
variable changes when an independent variable changes 
by one unit. SEM directly integrates measurement errors 
into a statistical model, so that estimates of regression 
coefficients are consequently more precise than with 
classical methods such as multiple regression, factorial 
analysis, or analysis of variance. The older methods ex-
amine only one linear relationship at the same time be-
tween independent and dependant variables and only 
within a range of values set by the investigator [14]. In 
contrast with classical methods, SEM analyzes a struc-
ture of variances and covariances in a dataset of observed 
variables and can be used to predict dependences be-
tween variables. In other words, SEM seeks to explain as 
much of the variance in dependant variables as it can 
from simultaneous measurement of the variances of the 
independent variables included in the model. Similarly, 
SEM incorporates measurement errors of the independ-
ent variables into calculation of the estimate, which re-
inforces the statistical power of the method and provides 
more precise estimates of regression coefficients. A 
model of measurement can therefore be validated from a 
theoretical model or empirical data [99]. The objective of 
effective connectivity analysis is to estimate parameters 
that represent influences between regions that may 
change over time and with respect to experimental tasks.  

In order to describe a functional network, network 
nodes and anatomical connections must therefore be 
proposed in conjunction with a SEM model to explain 
interregional covariances and determine the intensity of 
the connections. When applied to PET or fMRI data, 
SEM allows modeling of connection pathways 
between 



initially formulated by Buxton et al. [125] and later ex-
tended by Friston et al. [126]. A Bayesian inference 
scheme is devised to infer the model parameters from the 
data. The mathematical framework of DCM takes into 
account nonlinearities and temporal correlations. It also 
quantifies the interaction strength that one brain region 
exerts on another brain region at the neuronal level, 
whereas SEM only concerns the observed BOLD signal. 
DCM is suspected to be less sensitive than SEM to the 
number of degrees of freedom. Unlike SEM, DCM also 
models the effect of experimental, external, and modula-
tory inputs on network dynamics. Since DCM models 
neurobiologically plausible neural activities and takes 
into account dynamics and modulations, this mathemati-
cal framework would appear to be more advantageous 
than SEM. 

4.4. Diffusion Tensor Imaging 

While fMRI provides detailed information about the spa-
tial location of functionally active cortical areas, the 
question of anatomical interdependency between cortical 
areas remains elusive. A key tool to assess the validity of 
large-scale distributed networks in fMRI is knowledge of 
the underlying anatomical connections. The original idea 
behind SEM and functional neuroimaging was to com-
bine two data sets: a functional set with an anatomical set 
(connections between regions), based on the assumption 
that anatomy was the source of spatial causal relation-
ships. Our understanding of the connections between 
regions is limited, but since the advent of newer tracto-
graphy methods, the main white matter tracts can be de-
scribed. Diffusion Tensor Imaging (DTI) is a powerful 
MRI technique [127,128] that can be used to translate 
self-diffusion, or microscopic motion of water molecules 
in tissue into a MRI measure of tissue integrity and 
structure (white matter fibers). Data from diffusion ten-
sor imaging (DTI) and fMRI have been combined in a 
few previous studies [129–131]. These studies showed 
that a combination of techniques can give additional in-
formation about brain organization which may give more 
specific information about organization of brain func-
tions and brain injuries. In this latter case, a DTI-driven 
SEM would integrate information about white matter 
changes (e.g. maturation, aging) [100,132]. The prospect 
of using information derived from tractography could be 
used to constrain structural models. DTI and fMRI com-
binations will be essential to discover to what extent the 
brain functional organization as investigated with fMRI 
reflects structural features of the brain and, hence, to 
more accurately assess the relevance of fMRI to examine 
the relationship between functional and large-scale ana-
tomical networks. However, more studies are still needed 
to investigate anatomical correlates which would be re- 
lated to effective connectivity. 

An autoregressive approach is used to characterize a 
structure in a time series, whereby the current value of a 
time series is modeled as a weighted linear sum of pre-
vious values. Consecutive measurements within a given 
time series contain information about the process that 
generated this series. This is an autoregressive process 
and is a very simple, yet effective, approach to time se-
ries characterization. This is distinct from regression 
techniques that quantify instantaneous correlations, but is 
similar to the SEM model in that it estimates the relative 
influences over time. Autoregressive models of fMRI 
data address the temporal aspect of causality in a BOLD 
time series, focusing on the causal dependence of the 
present on the past. Each data point of a time series is 
explained as a linear combination of past data points. 
This approach contrasts with SEM regression-based 
models in which the time series can be permuted without 
changing the results. MAR models contain directed in-
fluences among a set of regions whose causal interac-
tions, expressed at the BOLD level, are inferred via their 
mutual predictability from past time points. 

4.3. Dynamic Causal Modeling 

A major criticism of SEM or MAR with regard to 
neuroimaging data is that they model effective connec-
tivity changes at the “hemodynamic level” rather than 
the “neuronal level”. This is a serious problem because 
the causal architecture of the system that we want to 
identify is expressed in terms of neuronal dynamics, 
which are not directly observed using noninvasive tech-
niques. In the case of fMRI data, previous models of 
effective connectivity have been fitted to the measured 
time series which result from a hemodynamic convolu-
tion of the underlying neural activity. Since classical 
statistical models do not include the forward model link-
ing neuronal activity to the measured hemodynamic data, 
analyses of interregional connectivity performed on 
hemodynamic responses are problematic. For example, 
different brain regions can exhibit marked differences in 
neurovascular coupling, and these differences, expressed 
in different latencies (see above) may lead to false infer-
ences about connectivity [124]. 

Dynamical Causal Modeling (DCM) has recently been 
developed as a generalization of both convolution mod-
els and SEM [66,67]. As described in Penny et al. [66], 
SEM can be shown to be a simplified version of DCM 
which also depends on the definition of a structural 
model. DCM model assumes a dynamic neuronal model 
of interacting brain regions, whereby neuronal activity in 
a given brain region causes changes in neuronal activity 
in other regions according to the structural model. This 
neuronal model is then supplemented with a forward 
model of how neuronal activity generates a measured 
BOLD response through the balloon model which was 

   



5. Conclusions

This article describes the most recent imaging ap-
proaches used to explore and identify circuits within 
networks and to spatially and anatomically model inter-
connected regions. Structural equation modeling is the 
most widely used method to model effective connectivity 
[56,82,133]. The relevance of applying SEM to fMRI 
neuroimaging data has been discussed in detail elsewhere 
[58,66,82,134]. SEM allows one to start with simpler 
models and then progress to more complex models by 
repeatedly testing the model fit to real data. SEM is use-
ful when some information is available, such as a small 
set of potential structural models or partial information 
concerning connectivity. Newer, more sophisticated ef-
fective connectivity analysis methods such as Dynamic 
Causal Modeling might circumvent the drawbacks of 
SEM and may shed more insight into how brain regions 
interact in information processing. Nevertheless, SEM is 
a well developed, computationally less intensive connec-
tivity analysis technique suitable for neuroimaging data 
especially for block designs and combined with other 
methods such as independent component analysis, partial 
correlation or DTI. The use of SEM may be justified by 
the fact that, unlike DCM, the statistical model underly-
ing SEM is quite simple and not computationally de-
manding. 
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