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Abstract 

Functional neuroimaging first allowed researchers to describe the functional segregation of 

regionally activated areas during a variety of experimental tasks. More recently, functional 

integration studies have described how these functionally specialized areas (i.e. areas whose 

activity is temporally modified) interact within a highly distributed neural network. When 

applied to the field of functional magnetic resonance imaging (fMRI), structural equation 

modeling (SEM) uses theoretical and/or empirical hypotheses to estimate the effects (path 

coefficients) of an experimental task within a putative network. Structural equation modeling 

represents a linear technique for multivariate analysis of fMRI data and has been developed to 

simultaneously examine ratios of multiple causality in an experimental design; the method 

attempts to explain a covariance structure within an anatomical (constrained) model. This 

method, when combined with the concept of effective connectivity, can provide information 

on the strength and direction of the functional interactions which take place between 

identified nodes of a putative network. After having provided a brief reminder of the principle 

of the blood oxygen level-dependent (BOLD) contrast effect, the physiological bases of brain 

activity and the concepts of functional integration and effective connectivity, we specify the 

various steps in the SEM analysis and the use of fMRI data to explore putative networks of 

interconnected active areas. 

Keywords: fMRI, model, network, effective connectivity, SEM 
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Introduction 

Functional magnetic resonance imaging (fMRI) has enabled great progress in the field of 

cognitive science. Indeed, over the last two decades, fascinating discoveries have been made 

in terms of the brain's structure, organization and function. Thanks to neuroscience, we can 

now better understand the way the brain operates when it recognizes a face [1-4], admires a 

work of art or learns a language [5]. Today, fMRI helps us locate the brain areas involved in 

the various forms of vision or emotion, in self-awareness and in awareness of others. On the 

basis of assumptions and theoretical and/or empiric models, we are now able to show how 

brain areas interact with each other and how external stimuli may modulate the latter's activity 

[6-11]. In order to understand the various stages which lead from fMRI-measured dynamic 

brain activity to interpretation of a large-scale network of brain functions, we first need to 

examine briefly the physiological bases of the hemodynamic blood oxygen level-dependent 

(BOLD) response. Secondly, we will describe the classic statistical approach (which enables 

measurement of brain activity in an exploratory way) and the concepts of functional and 

effective connectivity (which enable examination of the interactions between various brain 

areas). Thirdly, we will describe the principles behind the structural equation modeling (SEM) 

method which enables the analysis of interdependency relationships within a putative network 

of functional areas. Finally, we will emphasize the stages in SEM which must be thoroughly 

mastered in order to use this type of analysis correctly. 

Physiology and brain activity measurements 

Cortical activity measured by fMRI may correspond to a cascade of neurochemical events 

which occur within neurons and the glial cells (astrocytes, in particular) located near the 

synapses [12]. These cells play an essential role in reuptake of glutamate (the 
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neurotransmitter) released at the synapse following a change in membrane voltage. Glutamate 

is quickly transported within adjacent astrocytes where it is converted into glutamine for 

transfer back to the neuron. This synaptic and dendritic activity, when integrated over a few 

millimeters of neural tissue, would display relatively weak energy efficiency (production of 

ATP) but would roughly reflect the slow fluctuations in local field potentials, corresponding 

to electric entries and their intracortical treatment [13]. Unit recordings have been used to 

show that the frequency of neuronal discharge is related to the fMRI signal [12]. Thus, the 

BOLD contrast obtained in fMRI may represent the signature of the electrical, energetic and 

hemodynamic consequences of brain activity. By comparison, the signals measured in 

electroencephalography (EEG) and magneto-encephalography (MEG) are closely related to 

neuronal currents [14] and thus may be more sensitive to post-synaptic activity [15]. 

Nevertheless, the exact physiological process leading from neuronal activity to the BOLD 

signal is still under investigation [16-20]. Despite a certain level of uncertainty concerning the 

exact nature of the microscopic mechanisms at the origin of neurovascular coupling, a 

perceptive or cognitive stimulation carried out in the scanner gives rise to a cascade of 

metabolic processes associated with neuronal activity in various areas of the brain. A 

hemodynamic response to this metabolic demand involves an increase in cerebral blood flow 

and volume, which will vary in terms of its intensity in each activated voxel. The BOLD 

signal will change over time according to the metabolic demand and location of the involved 

cerebral areas and with respect to the oxygenation conditions, cerebral blood flow and 

volume. 
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Neural assemblies 

Neural assemblies which provide a conceptual framework for the integration of distributed 

neural activity are defined as distributed local networks of neurons transiently linked 

reciprocal dynamic connections [7,21,22]. The emergence of a specific neuronal assembly is 

thought to underlie the operation of every cognitive act. Neurons that belong to a given 

assembly are linked by selective interactions; that is, they interact preferentially with a sub-

ensemble of other neurons that are interconnected. These interactions are mediated through 

direct (monosynaptic) or indirect (polysynaptic) connections that are typically reciprocal  

[23]. On the one hand, there are reciprocal connections within the same cortical area or 

between areas situated at the same level of the network. On the other, there exist connections 

that link different levels of the network in different brain regions to the same assembly [24]. 

Connections of this type have been traditionally described as feedforward and feedback (or as 

bottom-up and top-down). These neural assemblies have a transient, dynamical existence that 

spans the time required to accomplish an elementary cognitive act (a fraction of a second). 

But, at the same time, their existence is long enough for neural activity to propagate through 

the assembly, a propagation that necessarily involves cycles of reciprocal spike exchanges 

with transmission delays that last tens of milliseconds. So, the relevant variable required to 

describe these assemblies is not so much the individual activity of the components of the 

system but the dynamic nature of the links between them [25].   

 

Local and large scale functional integration  

Emerging hypothesizes in neuroscience can use fMRI to study functional interactivity. By 

defining neural assemblies as distributed local networks which are transiently linked by large-

scale reciprocal dynamical connections, Varela et al. [25] made a clear distinction between 
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local and large-scale networks. On one hand, a local network is defined as a patch of neural 

tissue that synchronizes its activity through the local cyto-architecture, i.e. groups of entities 

(neurons) acting together in a coherent fashion [26]. Local integration occurs over a local 

network distributed over an area of ~1cm through monosynaptic connections with conduction 

delays of typically 4-6 ms [27]. For example, in columns of the primary visual cortex 

separated by 2-7 mm, which have non-overlapping receptive fields, neurons that share similar 

feature properties tend to synchronize [28]. On the other hand, large-scale dynamic 

connections are defined as interactions based on large fiber pathways between regions that are 

located far apart from one another. Large-scale synchronization concerns neural assemblies 

which are further apart in the brain (>1cm; transmission delays>8-10ms over polysynaptic 

pathways) such as, for example, assemblies between occipital and frontal lobes or across 

hemispheres, which are separated by dozens of milliseconds in transmission time [27].  

The dichotomy between local and large-scale networks serves as a neural basis for the key 

assumption that brain functional architecture abides by two principles: functional segregation 

and functional integration. While the segregation principle states that some functional 

processes specifically engage well-localized and specialized brain regions, it is now thought 

that brain functions are most likely to emerge through integration of information flows across 

distributed regions [25,29,30]. In this approach, it is not only isolated brain areas that are 

presumed to process information but rather a large-scale network, i.e. a set of brain regions 

interacting in a coherent and dynamic way. Hence, according to the functional integration 

concept, cortical areas and thus functions are integrated within specific dynamic networks. 

This concept supposes that there is dynamic interaction between interconnected, active areas 

and thus that the brain areas are expressed as networks within integrated systems. In such a 

system, localized areas are included in networks which become dynamic according to the 

cognitive task. Brain areas underlie several functions and can belong successively to several 
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different functional networks. In other words, a given brain area does not have a single 

function; its resources can be exploited in several different cognitive strategies. The principle 

of functional integration (which is also known in the field of electrophysiology) was used to 

analyze the event potentials obtained from multipolar recordings [31]. Thus, based on the 

functional integration principle, the relationships between several brain areas may be 

examined. 

MR Imaging Processing 

 

Individual analysis. In neuroscience, fMRI statistical results typically appear as statistical 

parametric maps (SPMs) which display relative activities (versus a control) according to the 

most commonly asked question: which brain regions are involved in the functional process 

under investigation? Hence, the majority of functional MR imaging studies try to locate 

cerebral functions by modeling the form of the hemodynamic response by a canonical 

function (the general linear model), which is evoked by a specific component of a given 

cognitive task [20,32]. The univariate analysis of BOLD signals served as a data reduction 

step in order to identify significant voxels based on the meaningful contrasts (conditions) 

according to the subtraction method. A single subject, fixed-effects model analysis is 

performed for each individual subject in order to prepare the extraction of the BOLD signal. 

In each single subject analysis, a minimum significance level of p = 0.05 is applied to detect 

activated voxels for the meaningful contrast. Local maxima are located within the predefined 

brain regions and then assigned to a Brodmann or anatomical area. This univariate analysis 

for revealing brain activity does not enable us to understand how brain areas interact with 

each other to modify their respective activities. This measurement method does not provide 

information on the interregional relationships in the brain and, currently, cannot tell us how 
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the regions interact. In other words, univariate statistics do not enable us to study the 

covariations (or causal relations) between various connected brain areas. 

Regions of interest (ROIs) approach. Specific hypotheses for activation within regions of 

interest are located individually in each subject using for example Marsbar 

(http://marsbar.sourceforge.net/) or PickAtlas softwares (http://fmri.wfubmc.edu/cms/softwar) 

which provide a method for generating ROI masks based on the Talairach Daemon database. 

Talairach Daemon software (http://ric.uthscsa.edu/new/resources/talairachdaemon) and 

mni2tal tool are used to automatically define Talairach atlas labels and to convert coordinates 

from MNI brain for equivalent Talairach coordinates using a nonlinear transformation 

respectively. The mni2tal algorithm is used to ensure that the activated pixels actually 

corresponded to the predefined brain regions (http://www.mrc-

cbu.cam.ac.uk/Imaging/Common/mnispace.shtml).  

BOLD signal extraction for SEM. Local maxima within the predefined areas and BOLD 

signal extracted for the SEM analysis are identified for each subject and each ROI. The 

extraction of the weighted mean BOLD signal is performed separately in each area. BOLD 

signals are thereafter normalized and concatenated to allow comparison of BOLD signals 

across subjects and sessions.  

Group analysis. While fMRI data are analyzed in a “whole-brain” fashion, the functional 

integration (connectivity) study is constrained to specific hypotheses concerning certain 

regions of interest, e.g. the inferior parietal cortex (BA 40), the middle frontal cortex (BA 46), 

the anterior cingulate cortex (BA 32), etc. At the group level, these regions were identified at 

the second (between -subjects) level using two one-sample t-test contrasts testing for 

http://ric.uthscsa.edu/new/resources/talairachdaemon
http://www.mrc-cbu.cam.ac.uk/Imaging/Common/mnispace.shtml
http://www.mrc-cbu.cam.ac.uk/Imaging/Common/mnispace.shtml
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activation in both groups (or both conditions for one group) with p values statistically 

corrected for multiple comparisons. Local maxima were located within the predefined brain 

regions and then assigned to a Talairach coordinate and a Brodmann area.  

Exploration of the effective connectivity 

Effective connectivity is closer to the intuitive notion of a connection and can be defined as 

the influence that one neural system exerts over another, either at a synaptic level (synaptic 

efficacy) or a cortical level [11,33]. In electrophysiology, there is a close relationship between 

effective connectivity and synaptic efficacy [34]. Effective connectivity can be estimated 

from structural equation modeling (SEM), a linear technique that can be used to test whether a 

theoretical model seeking to explain a network of relationships can actually fit the 

relationships estimated from the observed data. In the case of fMRI, the theoretical model is 

an anatomical (constrained) model and the data are interregional covariances of activity [35]. 

To describe a functional network, network nodes (active areas) and anatomical connections 

(fibers) must be proposed in conjunction with SEM in order to model interregional 

covariances and determine the intensity of the connections. Effective connectivity will 

represent the dynamic influence that cortical and subcortical regions exert on each other via a 

putative network of interdependent areas. An increasing number of fMRI and PET studies 

have used the SEM method to show specific networks involved either in working memory 

[36-41], within certain attentional processes [42-44], face perception [4,45], movement 

processing [46-50] or verbal fluency (semantic task) [8]. 

Path model construction and Structural Equation Modeling (SEM) 
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The path model is based on a hypothesized network restricted to different topologically 

distinct brain regions. We used SEM to construct a pathway model that could account for 

fMRI data in all regions of interest. Adjusted signals extracted from the data set (see BOLD 

signal extraction for SEM) are entered as variables. In SEM analysis, the variables are 

considered in terms of the covariance structure (see below for the detailed method).  

 

Softwares for SEM analysis 

Structural Equation Modelling (SEM) can be performed with a number of different software 

programs. The most popular are LISREL (http://www.ssicentral.com/lisrel), EQS 

(http://www.mvsoft.com/products.htm) and AMOS (http://www.spss.com/amos/). Other, less 

widely used software includes CALIS (SEM procedure in SAS), EZPATH (in Statistica) and 

MPLUS (http://www.StatModel.com/), which works on non-normal variables (binary, 

censured, etc.). 

 

Basic concepts 

SEM is a technique of multivariate statistical analysis that can be used on fMRI data. 

Originally, SEM was developed to analyze psychometric and economic data. Structural 

models make it possible to analyze linear relationships between variables from the analysis of 

the covariance among the variables. Structural models evolved from two principal methods of 

analyses 1) factorial analysis (for a review: Bollen, 1989a) and 2) multiple regression or 

causal path analysis (a method developed in the 1930’s by Wright e.g., (for a review: Wolfe, 

1999)). Structural models examine, simultaneously, multiple sources of influence on the 

dependent variable in an experiment [51,52]. When applied to fMRI data, SEM allows 

http://www.ssicentral.com/lisrel
http://www.mvsoft.com/products.htm
http://www.spss.com/amos/
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modelling of paths of connection between cortical areas and reveals relations, 

interdependencies and covariance among the various cortical areas. Given an anatomical 

model, SEM shows the effects of an experimental task on specific network of connections 

[33,53-55]. In this type of statistical analysis, normalized signals (variables) are considered in 

terms of the structure of their covariances. Thus, SEM allows one to infer interregional 

dependencies (interactivities) between various cerebral cortical areas.  

SEM methods, in comparison with classical approaches such as linear regression, allows one 

to simultaneously analyze several types of interrelationships between variables in an 

experiment [6,11,20,56]. Variables can be directly observable or indirectly observable 

(latent), i.e., variables that are inferred from multiple indicators1. This paper discusses only 

directly observable variables.  

• Variables may be directly related or indirectly related. For example, the effect of A on 

C may be direct, (A->C), or it may be indirect or mediated by B, (A -> B -> C). SEM can 

distinguish direct from indirect relations. 

• A relation between variables may be recursive. That is, the effect of A on B, (A->B), 

may be different than the effect of B on A, (B->A).  

• Relations between variables may be reciprocal. For example, an important question 

often asked is, “Which of two variables acts more on a third one?”  SEM answers the question 

by analyzing the relations on a hierarchical basis.  

• The nature of the relation between variables is given by the regression coefficient; it 

describes how much the dependent variable changes when an independent variable changes 

by one unit. SEM directly integrates the errors of measurement into a statistical model, by 

doing so the estimates of regression coefficients are more precise than they are with classical 
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methods such as multiple regression, factorial analysis, analysis of variance or discriminant 

analysis. The older methods examine only one linear relation at the same time between  

independent and dependant variables and do so only within a range of values set by the 

researcher [33]1.  

Contrary to classical methods, SEM is interested in a structure of variances/covariances in a 

dataset of observed variables and it will try to predict dependencies among the variables (see 

Figure 1). In other words, SEM seeks to explain as much of the variance in dependant 

variables as it can from the simultaneous measurement of the variances of independent 

variables that are included in the model. Similarly, SEM incorporates errors of measurement 

(residual variances) of the independent variables into the calculation of estimate, which 

reinforces the statistical power of the method and provides more precise estimates of b 

coefficients (coefficients of regression). Thus, one can validate a model of measurement from 

a theoretical model or empirical data [41].  

 

Constructing and Specifying the Theoretical Model 

Relationships between each variable should be supported by the hypotheses of a theoretical 

framework and/or empirical observations. It is important not to voluntarily omit significant 

explanatory variables in the model of analysis (error of the model specification) at the risk of 

under or over-estimating (biasing) the effects of the other variables that are retained in the 

model. The stronger the correlation between these variables, the more the coefficients of 

regression will be biased. The principle of parsimony requires that we identify and retain 

 
1Latent variables play a double role: in the first part of causal path they act as dependent variables 

or variables to be explained and in the second part they act as independent or explanatory variables. The concept 

of latent variables is important because it permits one to study non-directly or indirectly observable phenomena; 

phenomena for which we have no direct measurements. So, SEM uses observable variables that are strongly 

associated with the latent variable as indicators of the latent variable itself; the result is the latent structure- the 

relations among the indicator variables, which can then be analyzed  
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explanatory variables and the most relevant relations or paths among them to explain a 

phenomenon. We can do so by first testing an initial, economical, model and then making it 

more complex, if necessary. The objective is to retain the fewest number of variables and 

interrelationships (paths) that explain as much as the variance in the phenomenon, as possible.  

The specification step consists of constructing a diagram of relations (e.g., Figure 1A) and 

then determining the structural model by answering various questions: Which linear relations 

between variables must be tested? What is the nature of their relationship (one-way, 

reciprocal/recursive)? What are the different parameters to be estimated (coefficients of 

regression, covariances)? Which parameters are fixed, free or constrained? 

Figure 1, adapted from [4]illustrates an example of SEM. We examined effective connectivity 

within an emotional network composed of three brain areas involved in processing fearful 

faces: Orbito-frontal (OFC or VAR1), Anterior Cingulate Cortex (ACC or VAR2) and 

Amygdala (AMY or VAR3). Their experimental manipulation consisted of two tasks, an 

incidental perception task (gender identification) (n=14 subjects) and an intentional detection 

task (effortful discrimination) (n= 10 subjects), each task performed with three facial 

expressions, fearful, neutral and ambiguous. Subjects were scanned while performing the 

tasks. Effective connectivity between the three brain areas was assessed using SEM.  

Results show that the hypothetical network fits the experimental data for both tasks, in both 

hemispheres. The comparison between task 1 and 2 reveals significant differences in strength 

and direction of the connectivity patterns for the left hemisphere and, to a lesser extent, for the 

right hemisphere. The path coefficients analysis suggests that during incidental perception, 

the fearful information generated in AMY, reaches the OFC through the ACC, while in the 

intentional perception task fearful information generated in AMY follows a reverse route, 
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from the OFC to the ACC. The findings confirm differential brain connectivity during 

incidental and intentional processing of fearful faces.  

Insert figure 1 about here 

Free parameters are those whose value is unknown and which the algorithm has to estimate. 

Constrained parameters are free parameters on which the model imposes a constraint, often a 

constraint of equality between their values. Fixed parameters indicate potential paths which 

will not be estimated; they are fixed at zero and so, do not enter in the procedure of 

calculation. This diagram of relations (Figure 1A) is then transposed into linear equations as: 

VAR1 =  * VAR3 +  * VAR2 + 1 * e_var1

VAR2 =  * VAR3 +  * VAR1 + 1 * e_var2

pV1_V3  pV1_V2

pV2_V3 pV2_V1

The parameters are named, in bold, by the variables that are related: It is convenient to put the 

influenced variable (effect) first and the influencing variable (cause) second.  

From the system of linear equations we can calculate the proportion of variance in the 

observed variables (e.g. VAR1) that is explained by the variables on the right side of the 

equation. The more closely the proportion of the explained variance approaches 1.0, the 

greater our confidence that we have identified the variables that are associated with the 

observed variable. Conversely, when the proportion of explained variance approaches zero we 

have little confidence that the variables are linearly related.  

Estimates of the theoretical model 
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SEM works with a matrix of covariances rather than with a matrix of correlations. This choice 

implies that the value of estimated coefficients will depend on the unit of measure of the 

variables (like the b coefficients in the multiple regression analysis). Standardizing the values 

of the coefficients gives them all the same metric, 1.0, which makes them easier to interpret. 

The standardized values are equivalent to beta coefficients of simple or multiple regressions.  

Calculating the model parameters. Only relationships proposed by the theoretical model are 

examined. The estimate of the model parameters (covariances, correlations, coefficients of 

regression) by maximum likelihood (robust estimator) is achieved with an iterative process 

guided by the decrease in the value of  the difference between the observed covariance matrix 

and the theoretical covariance matrix calculated from the parameters included in the model. 

An iterative procedure adjusts the predictive values with the observed values. The estimator is 

consistent when the predictive values converge towards the observed, true, values of 

parameters.  

Testing hypothesis. At the end of the estimation process, a test of fit is applied: In this test, the 

value of the function representing the difference between the observed and predicted matrix is 

used to compute an indicator called 
2

 which follows a chi-square distribution. The null 

hypothesis is that there is no difference (a gap of zero) between the predicted and observed 

matrix in the parent population (test of exact fit). Hence, a good fit between the observed and 

predicted matrices is indicated by the impossibility of rejecting the null hypothesis (Ho). This 

chi-square test is the only indicator of adequacy which follows a known distribution : the 

distribution of chi-square with [p (p+1)/2-q] degrees of freedom; p = number of observed 

variables, q = number of estimated parameters). A general consensus in the scientific 

community is to consider that the model fits the data when the probability of the Chi-square 

test has a value of p > 0.05.  
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The estimation algorithm (ML) and the Chi-square test rely on the assumption of the 

multinormality of the variables,. The multinormality assumption can be tested by calculating 

either coefficients of symmetry and concentration, or the coefficient of Mardia, which takes 

all the variables into account simultaneously. 

Sample size. In general, it is advisable to have a sample size including at least about ten 

observations by estimated parameter [57]. If we take into account that the fit of the model is 

assessed by a chi2 statistics that is calculated using the sample size (n) and the fit function, 

there can be a lack of sensitivity (not rejecting the null hypothesis) when the sample size is 

small (i.e. less than one hundred), at the contrary, the test can become too much sensitive 

(arousing the type II error: rejecting wrongly the null hypothesis) when the sample size is 

higher than one thousand. It is henceforth recommended as, a rule of thumb, to work with 

sample including at least the number of observations corresponding to the number of 

observations necessary to get a reliable estimation of the parameters. But, according to the 

sensitivity of the test of fit a sample size of several hundred will be optimal to avoid a lack – 

reciprocally an excess – of sensitivity [57]. In fMRI, it means that the number of observations 

will depend on the subject and scans number. All these information are based upon 

recommendations in the framework of the Maximum Likelihood algorithm. Recent 

developments in the use of Bayesian algorithm (Markov Chain Monte-Carlo with Gibbs 

sampler and/or Metropolis Hastings) to estimate SEM parameters have proved to give 

consistent estimations even with samples smaller than one hundred observations [58] 

Identifying a theoretical model 

The identification of a theoretical model is a determining issue in the resolution of an analysis 

by SEM. A problem of model identification means that the algorithm used is unable to 

generate single estimates of the parameters, which will lead it to reject the model. Thus, to 
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identify a model implies that it is theoretically possible to calculate a single estimate of each 

one of its parameters (coefficient of correlation, covariance or regression). This question is 

partially important with the complexity of the tested model. The more the theoretical model 

becomes complex, the more the difficulty of its identification increases. The first condition 

necessary to identify a model is that there are at least as many sample moments as parameters 

to be estimated. The second is the absence of multi-colinearities between the observed 

variables. If some of them are too strongly correlated, that reduces the number of 

observations. More largely, the problem of the identification of a model is relied on the basic 

concept of degrees of freedom.  

As previously noted, we want a structural model that is able to reproduce the theoretical 

covariance matrix (predicted) from the observed covariance matrix. Thus, the model must be 

identifiable. For that, we need to compare the number of parameters to be estimated 

(unknown) with the number of observed variables (known). In general, the simplest structural 

model will be always preferred because it has fewer parameters to be estimated, it is more 

economical, more stable and it will have a greater number of degrees of freedom, which 

makes it more difficult to reject the null hypothesis. We thus will seek to estimate each 

parameter in a single way (a unique solution). In the model just identified, the number of 

observed variables equals the number of parameters to be estimated, the model, called the 

saturated model, gives a trivial solution for the estimation of the model parameters and thus is 

non-informative. In the model under identified, the number of observed variables is lower 

than the number of parameters to be estimated, the model tries to estimate more coefficients 

than there is information available in the matrix of data; the estimation is impossible because 

there are too many unknown parameters. In the model over identified, the number of observed 

variables is higher than the number of parameters to be estimated. This model is optimal since 

we have fewer parameters to estimate than we have observed variables; thus, the model is 
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identifiable. To identify a model, it is often necessary to fix or constrain certain parameters, to 

fix variances of error of observed variables, to fix coefficients of regression measuring the 

known effects with certainty, to make the model identifiable. 

Error Variance (or residual variance). Error variances represent unmeasured influences that 

are outside the model. They indicate a proportion of the total variance of a variable not taken 

into account by the other variables of the model [37,59,60]. Finding that a certain brain area 

has no residual variance would imply that all variance in this area is taken into account by 

connections with other areas in the model of measurement, which seems unlikely in neural 

systems. This error variance generally comes from the influence of brain areas not included 

within the model or even from the influence of an area on it. In practice, error variance can be 

fixed using rough estimations obtained via multiple regression, which reduces the number of 

parameters to be estimated in the model.  

Evaluating the model’s adequacy to the data 

The Chi square test presented above is the only test based on frequentist inference (Neyman-

Pearson approach) available in SEM. The major drawback of Chi square test is its 

dependency on sample size, and to a lesser extent on the number of parameters introduced in 

the model. There are other indexes of fit of the model which are based on error of 

approximation, which is indicated by difference between the matrix of observed covariance 

and the matrix of estimated covariance. These indexes can adapt to the sample size and to the 

nature of the data; they are based on the total population or the sample and they can support a 

simple model or not penalize a complex one.  

Contrary to models just perfectly identified (Nobs = Npar), models over identified (Nobs > Npar) 

never perfectly adjust the observed data. Thus, the degree of adequacy of the models must be 

estimated. For that, we use indexes of adequacy or indicators. However, such indicators often 
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evaluate an overall fit based on averaged values, thus it is extremely probable that certain 

parts of the model must be slightly adjusted. In this case, a set of indicators will be necessary 

to validate the adequacy of the model. Each indicator will generally reflect a particular aspect 

of the fit of the model; this is why several indicators are often used to test the fit of two 

matrices. By the way, numerous studies based on simulated data have shown that different 

indicators can be more or less sensitive to different types of misfit or to different types of bias 

(sample size, deviation from multinormality), it’s henceforth recommended to establish the 

decision of model acceptation (or rejection) by considering a set of indicators rather than one 

or two indicators isolated [61,62]. Thus, from theoretical model we will estimate path 

coefficients which will be validated on the basis of a chi-square test and by the means of 

various indicators [50,57,61,63,64].  

Briefly, absolute fit indexes evaluate how well a theoretical model correctly reproduces 

observed data. Incremental fit indexes (or indexes of comparison) measure the fit 

improvement by comparing the tested model with a more restrictive basic model. Indexes of 

parsimony allow one to avoid under or over-estimating a given model, and to determine the 

most suitable model.  

Absolute fit indexes. There is no perfect absolute index of measurement (gold standard) for 

evaluating the improvement of fit [61,64,65]. All indexes presented in this section are 

approximation indexes that test the quality of fit.  

Goodness-of-fit indexes. In principle, goodness-of-fit indexes compare the matrix of 

covariance predicted by the model with that of a “saturated” model, which would perfectly 

predict observed data. We first obtain a value of chi-square (χ²):  
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( )2

min1N F = −  Relation 1, where N is the sample size and Fmin is the minimal value of the 

minimization function obtained through the estimation algorithm used (in general maximum 

likelihood).  

We use the test based on the minimization function 2 or test of exact fit. Ideally the test 

result should be non-significant. This index follows a chi square distribution so it is possible 

to determine a p-value associated with the chi-square value and the number of degree of 

freedom (df) of the tested model. The Chi-square is biased by the sample size because sample 

size (n) enters into the computation of this index. So, this index presents two disadvantages:  

its value is affected by (1)  sample size, and (2) the number of parameters in the tested model. 

Furthermore, the chi-square is sensitive to the magnitude of the correlations. The stronger the 

correlations the greater the values of chi-square, and thus the larger the difference between 

observed correlations and those predicted by the model [55]. 

During the last thirty years new indexes have been designed that avoid the dependencies on 

sample size and the number of parameter. Their authors have tried to find indexes which have 

know intervals of variation and for which threshold values can be found that allow one to 

objectively decide whether to accept or reject the model. In the last ten years, the limitations 

of theses indexes, demonstrated through simulation studies, resulted in the approach of using 

several references and comparing their respective values for tested model [61,62] This point 

will be discussed after presenting the main indexes, regrouped under the rationale of their 

construction principle. 

Approaches based on the comparison of the fit of reference models. Two reference models are 

the best model (saturated model) and the worst model (model of independence). For the 

independence model we assume that there is no relation between variables. Covariance values 
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are fixed at zero and only the values of variances are estimated, thus this model can be 

considered as the model presenting the worst fit to the data. The ratio of the model tested and 

model of independence is particularly instructive because it shows improvement made by the 

model tested. These indicators base on the relationship between the 
2

 of the tested model 

and the 
2

 of the model of independence. Ratio values can theoretically vary from 0 to 1: We

consider that values about 0.90 indicate a good adjustment. NFI (“Normed Fit Index”) and 

RFI (“Relative Fit Index”) [64]correspond to the ratio between the 
2

 of the considered 

models, RFI is corrected by the number of degrees of freedom (see formulas in appendix). IFI 

(“The Incremental Fit Index”) [66] and TLI (“Tucker-Lewis Index”) [67] are based on the 

ratio between the difference of 
2

 of the model of independence and the tested model and the 

difference of 
2

 of the basic model and the number of degrees of freedom of the model.

Moreover, TLI is corrected for the number of degrees of freedom. We will be able to neglect 

the CFI (“Comparative Fit Index”) in this first approach. NFI and TLI are two indexes that 

can be used to judge the fit improvement when comparing two models designed by the 

researcher. We discuss this issue when presenting the model comparison. 

The GFI (“Goodness of Fit Index”) can be considered to estimate the proportion of variance 

of the observed matrix that is explained by the model [68]. AGFI (“Adjusted Goodness of Fit 

Index”) corrects GFI for the number of degree of freedom (df). These indicators vary 

theoretically between 0 and 1. Values of at least 0.90 indicate a good adjustment. PGFI 

(“Parsimony Goodness of Fit Index”) is the product of GFI and the ratio accounting for the 

economic aspect of the model, i.e., (df of the model) /(df of the basic model). PGFI supports 

the more economic models.  
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The RMR (“Root Mean square Residual) estimates the average of residues. Its interpretation 

is made possible if its initial matrix is a correlation matrix. SRMR corresponds to 

Standardized RMR it is interpretable if its initial matrix is a variance/covariance matrix. 

Approaches based on the gap between observed and estimated. The following indicators try to 

standardize the indicators that are calculated from the differences between the observed 

matrix and the estimated matrix. These indexes test the “badness” of fit of the model. FMIN is 

the minimum value of the difference function between in the sample reached at the time of the 

estimate and the estimated matrix. F0 is the value of the difference function in the parent 

population. It is especially used in the form of the RMSEA ("Root Mean Square Error of 

Approximation") presented in Table 1. RMSEA (Root Mean Square Error Approximation) 

represents the average difference, by degree of freedom, expected in the population and not in 

the sample (Relation 2). RMSEA is particularly important because it is relatively independent 

of sample size and the number of parameters used in the model [69]. It is given with a 

confidence interval of 90%. 

RMSEA combines several properties. It is an index of parsimonious adequacy because 

RMSEA includes a correction for the complexity of the model. It will not seek to approach a 

centred distribution (as does chi-square), rather, to approach a non-centred distribution, which 

does not require having a true null hypothesis. It is a test of close fit based on the hypothesis 

that in the parent population, the gap between the model and the data can be different from 

zero (a hypothesis of exact fit that is very restrictive). This means that an adequate fit between 

the model and the observed sample need not be perfect (close fit). It is an index of badness of 

fit, i.e. a bad specification of the model: A  zero indicates a good fit, whereas higher values 

indicate a bad fit. Thus, the smaller RMSEA, the better. Otherwise, the model will be only a 

rough approximation of reality and not an exact copy. Because RMSEA is relatively 
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independent of sample size and the number of parameters, its values can generally be 

considered  independently of the data and model characteristics. These properties allowed 

Browne and Cudeck (1993) to give general reference thresholds, now widely accepted by the 

SEM community: RMSEA < 0.05 indicates a good adequacy of the model and the null 

hypothesis will not be rejected;  0.05 < RMSEA < 0.08 constitutes a reasonable error of 

approximation and for RMSEA > 0.10, the model’s adequacy is considered to be weak.  

Indexes of parsimony (absolute and incremental corrected indexes). Indexes of parsimony 

balance two opposite constraints: they minimize the number of coefficients to be estimated 

and maximize the degree of fit of the model. They are used to prevent models from having too 

many parameters; they detect if a bad fit of the model does not arise from a lack of free 

parameters (too many fixed parameters). Thus, these indexes can be used to find the most 

parsimonious of several equivalent models. They measure the lack of fit due to the model 

constraints. For example, the scaled chi-square of Jöreskog [68] can detect models that are 

over or under adjusted: It indicates which of several alternative models is the most 

parsimonious. Table 1 shows key values for interpreting the fit of the model to the data.  

 

Insert table 1 about here 

 

Comparing models  

The current canonical approach of SEM, of testing only one model, has been evolving 

towards a model comparison approach. The models in competition can be defined before the 

experimentation (theory driven process) or can be constructed through an improvement 

process while analyzing the data (data driven process). This way of handling the models tends 



24 

to reduce the distinction between a purely confirmatory approach (only one model tested) and 

exploratory approach (like in classical factor analysis where the aim is to explore the data 

structure without imposing any constraint on the number of factors or on the relationships 

between the observed variables and the factors). The interest in comparing several models 

and/or the existence of equivalent models (models for which the fit indicators have exactly the 

same values hence the relationships between variables represent different causal networks) 

has lead to a new paradigm that compares a set of plausible models. This new paradigm will 

be discussed after describing the classical model comparison approach starting with the data 

driven approach: the improving of a model. 

Re-specifying the theoretical model (indexes of modification).Questions arise when we try to 

improve the fit of the structural model to empirical data or to the theory which underlies it. 

Relations supported by theoretical assumptions can not be modified while relations supported 

by empirical assumptions, based on previous results, can be modified if theoretically justified. 

Indexes exist to identify variables that are worth the effort of re-specification. Indeed, it is 

possible to add or withdraw paths based on empirical criteria. Maximum Lagrangian 

multipliers estimate of how much the chi-square test would decrease if a particular path that 

was fixed at zero were introduced in the model. However, maximum Lagrangian multipliers 

are sensitive to the sample size; changes are more likely to be significant with large samples. 

If the amplitude of the expected effect is low, the statistical significance of this indicator 

might reflect size rather than the amplitude of required effect. Thus, modification indexes 

represent the amount of decrease in chi square if one or more additional parameters of 

covariance were considered. A value of the modification index higher than 3.84 (the value of 

the chi square distribution with one degree of freedom corresponding to a probability of .05) 

would show a significant chi-square reduction if we added a specified relation in model.  
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Indexes of modification are sometimes delicate even if their significance is easy to 

understand,. Initially, such indicators are provided for all the parameters not introduced within 

the model, including aberrant parameters such as covariances between latent variables and 

error variances. More dangerous are the parameters that seem plausible but cannot be 

interpreted. Thus, error covariances often have high values. In certain cases, the covariances 

make sense, for example when testing and retesting, when conducting consecutive tests, halo 

effects, etc. In such cases they can be introduced into the model. However, the user often 

cannot give a reliable interpretation of the error covariance between observed variables. Being 

able to interpret the error covariance between observed variables is more important than 

decreasing the 
2

 value in order to accept the model. In addition, the values of the indexes 

are not independent: if we add one parameter not yet introduced into the model, the indexes of 

modification of the remaining parameters will be modified. Adding parameters whose indexes 

of modification are not very high may not make much of a change in the quality of fit of the 

model. Moreover, adding addition parameters will adversely affect indicators that asses the 

economy of the model. Thus, it is important:  

• To introduce only parameters which are justified on theoretical and/or methodological 

grounds. 

• Not to introduce several parameters at once, but rather, to introduce one by one new 

parameters for which the index of modification is high and interpretable, in order to see their 

effect on the remaining indexes of modification of the other parameters that were not yet 

introduced [65].  

Examining the standardized residues of the covariance matrix might suggest that there is an 

error in the predictions of the model. Residues exceeding ± 2.58 (the value of the Z 

distribution for p= .01), should be regarded as significant. Residues with high values indicate 
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that the relationship between the two variables is insufficiently accounted for by the model. 

Such high residual values can suggest the relationship may be improved by adding parameters 

(representing direct and/or indirect effects) to the model.  

The main drawback of these data driven techniques is that they result in strong biases in the 

fit indicator values and their interpretation. A strong test of the re-specification would be to 

test the improved model with data from a new sample, a difficult and costly effort. One could 

instead, divide the sample in two sub-samples: use one to get information for improving the 

model and the other to test the improved model. 

Comparing models defined a priori. The simplest situation is the comparison of nested 

models. Model A is said to be nested in a model B when it is possible to pass from model A to 

model B only by freeing some parameters. SEM can explicitly compare the adequacy of 

nested models. The two, nested, models can be easily specified by most software by 

introducing constraints on the parameters. For example, if we want to compare two models, 

one of which contains a parameter and the other does not, one simply leaves the parameter 

free in the one model and constrains is to equal zero in the other. The significance of the 

difference between the 
2

 of the two nested models is tested. The number of degrees of 

freedom of the test is the difference between the numbers of df of the two models. If the test is 

significant, the Ho of equivalence can be rejected and one can conclude that one of the models 

more adequately fits the data: Notice, this conclusion is true only if the nesting model fits the 

data, i.e., the nesting model is correct.  

Comparing independent groups. Between-group comparisons are a precious feature of SEM 

for fMRI studies [36,39,43,53,65,70-72], as it provides the means to test the effect of different 

experimental conditions when the data come from independent groups. We invite the reader 

to consult the article of de Marco et al.[4], noted above, for an example. That study concerned 
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changes in effective connectivity that occurred during incidental and intentional perception of 

the same fearful faces. Briefly, SEM was used to construct a pathway model that could 

account for fMRI data in all regions of interest for the perception of fearful faces. Adjusted 

fMRI signals in the regions of interest extracted from the data set were entered as variables in 

the structural model, which was assessed by minimizing the difference between observed and 

predicted covariances of the fMRI data, according to the maximum-likelihood algorithm. In 

the analysis, the variables are considered in terms of their covariance structure.  

Typically, in SEM, between-group comparisons use a model comparison approach . Instead 

of analyzing only one covariance matrix, the analysis uses stacked matrices, one for each 

experimental group. In a non-constrained model, there is one value for each path coefficient 

and each group. Also in this approach, constraints are introduced on the estimations of the 

parameters, usually constraints of equality; there is only one value for each parameter and it is 

common to all groups. For example, the estimate of the values of a path coefficient can be 

constrained to be equal in the experimental groups. The between-group comparison, therefore, 

amounts to a comparison between a constrained (fixed parameters) and a non-constrained 

(free parameters) model. The model-comparison proceeds as follows. First, the algorithm 

estimates the specific parameter value for each path and each group, and the model is 

examined to ensure that the hypothesized causality network fits the data. Then, the parameters 

for each group are forced to equality. Finally, the significance of the difference between the 

two models is tested. Since the constrained model is nested in the non-constrained model, the 

2
 of the difference between the 

2
 of the two models can be used to test the significance of 

the difference between them. If the models differ, then it must be that the experimental groups 

differ in terms of path connectivity. In other words, if the fit of the constrained model (using 

common values for the parameters) is significantly different from the fit of the unconstrained 

model (using specific/different values for the parameters in each group) then we can conclude 
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that there is a difference between the parameters (i.e. the causal pathways) of the experimental 

groups and the differences must be taken into consideration to model the covariance matrix.  

In order to account for the overall difference between the experimental groups, each pair of 

parameters from the experimental groups can be compared (pair-wise comparison). The test, 

which follows a Z-distribution, is based on the differences between the parameter values 

divided by the standard error of measurement of these differences [73].  

Procedure for model specification  

This approach was first mentioned by McCallum (Mac Callum, 1986; MacCallum, Wegener, 

Uchino, & Fabrigar, 1993). The model specification approach considers a set of models 

comprising common or obligatory parameters (they will be present in all the studied models) 

and optional parameters. Optional parameters may or may not be present in some of the 

models. If the number of optional parameters is p, then the total number of different models 

will be 2p: for one parameter there are two models (with and without the parameter), for two 

parameters there are four models, etc. Once the not-identified models or models comprising 

inadmissible values are eliminated, we obtain a set of "plausible" models that contain the 

obligatory and optional parameters. To sort them out we will use the Kullback and Leibler 

(Burnham & Anderson, 1998) approach that is based on information theory. The issue is to 

retain the best model in terms of the trade off between the quality of the adequacy of fit of the 

model to the data and the economic character (number of parameters) of the model. To do so 

we will use the indicators built within the framework of the information theory, in particular 

the criterion of information of Akaike (Akaike Information Criterion; about the use of this 

indicator and model selection in SEM, see Raftery, 1993). Because they are “badness of fit 

indicators”, high values indicate bad models. The approach is particularly heuristic: It bridges 

clearly exploratory approaches (there is no a priori model) and clearly confirmatory 
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approaches (there is only one a priori model) by exploring “plausible” models. The essential 

idea of the information-theory data analysis is that, although the “real” model behind the data 

is not knowable, we can construct models that could plausibly generate the data. Plausibility 

models are assessed by the information that they take into account. 

Choosing an algorithm of estimate. The main softwares propose different algorithms to 

estimate the parameters. The maximum likelihood algorithm is most frequently used in 

structural modelling because its parameter estimates are highly robust. Nevertheless, 

questions of estimate bias caused by variations in the conditions of validity (i.e., 

multinormality of the data), reports of the absence of convergence and the occurrence of 

aberrant estimates (e.g., negative variance) have resulted in the development of other 

estimation algorithms. Some of them provide reliable starting values for other more 

sophisticated algorithms, such as maximum likelihood algorithms (e.g., Generalized Least 

Squares). Others circumvent the necessity of the multinormality assumption, e.g., skewed 

distributions are not problematical. The “Weighted Least Squares” or “Asymptotic 

Distribution Free” algorithm estimates weights for each covariance to correct for asymmetric 

characteristics of the distributions of each pair of variables: It gives a more reliable estimate 

of the parameters and of the tests of fit when the distributions are asymmetrical (Browne, 

1984). Weighted algorithms require large sample sizes. The difficulties and biases of estimate 

noted earlier, as well as the absence of tests of inference for certain indicators (for example 

the coefficient of determination R), resulted in including bootstrapping procedures within the 

software of structural models. Bootstrapping procedures have the advantage of providing 

distributions for all the parameters, distributions taking into account the specificities of the 

data. As Bollen and Stine (1993) showed, the relevance of bootstrapping must be clear. 

Finally, 20 years ago, the Bayesian approach appeared  to provide a pragmatic improvements 

in the procedures for estimating parameters within the framework of complex models (e.g., 



30 

multilevel models for example) (Gelman, Carlin, Stern and Rubin, 2004). In the case of the 

structural models, the Bayesian approach can yield robust estimates, especially with small 

samples. It also allows a priori constraints to be placed on the distributions in order to avoid 

problems of estimate (e.g., requiring the variances to be positive). We have such a Bayesian 

procedure in version 6 of AMOS (the "Metropolis" algorithm). The algorithm obtains an a 

posteriori distribution of all the usually estimated parameters. We can also obtain, in 

supplement, the distribution of statistics of complex parameters, such as direct and indirect 

effects, which are not provided by the usual algorithms, for example as the maximum 

likelihood algorithm. 

Conclusion 

It should be remembered that SEM is a confirmatory model of analysis and/or a theoretical 

model: Thus, each relation in the model that is tested must be grounded in a theory or on 

empirical bases. The theoretical framework must be rigorously defined, the research question 

must be clearly posed, the issues correctly argued and the hypotheses no falsifiable.  

Insert figure 2 about here 

Figure 2 summarizes the main steps of the SEM method, along three paths. The first one (left) 

indicates the theoretical process: from the theory and the anatomical hypothesis to the 

formalization of a structural model and its implantation in SEM software using the different 

languages available (path diagram, matrix language or equations). The second one (top) 
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shows the data collection steps, from fMRI data collection to the implantation of these data in 

a file readable by the software used. The third path (right) indicates the parameter estimation 

and the interpretation process: from the model and data to the algorithm chosen to estimate 

parameters that allow computing the theoretical covariance matrix that is compared to the 

observed matrix. The gap between the matrices serves as indicator to compute the 
2

 test 

that, together with other indicators noted in the text, are used to decide whether the model 

adequately describes the data. Acceptance of the model confirms the theory. Sometimes, the 

value of the indicator can lead to an improvement of the model. If so, it is important to go 

back to the different steps, especially step one. Rejection of the model, while probably not a 

publishable outcome, can be quite heuristic as it can give insight about why a theory is not 

working in a specific case. The approach presented in Figure 2 is the canonical one, aimed at 

testing one model or comparing few models defined a priori (for example in a group 

comparison approach). New approaches, such as model specification, may add new 

perspectives but they will not modify the path one must take from theory construction, to data 

collection, to decision making.  
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Figure 1: A) Model with three regions. The three observed variables (VAR1, VAR2, and 

VAR3) are represented by rectangles; each of them is connected with an error term (variance 

not explained by the model). B) The relationships between the observed variables are 

described by an arrow pointing towards the dependent variable. Brackets after the relation 

represent the constraint on the parameter, e.g. ( pV1_V2)- to indicate a free parameter and 

(1)-to indicate a fixed parameter.  Some parameters are constrained or fixed to equal 1.0 (in 

this example the parameter relating the error variance to its variable) so that the system of 

equations can be identified.  (Adapted from de Marco, et al. (2006). "Changes in effective 

connectivity during incidental and intentional perception of fearful faces." Neuroimage 30: 

1030-1037). 
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Figure 2: Diagram synthesizing the main steps of a SEM analysis. 
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Table 1: key values of interpretation of indexes 


