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Abstract. This paper presents a C0 8-node quadrilateral finite element (FE) for geometrically linear
piezoelectric plates/shells. It is based on a high-order kinematics proposed in [1] for the mechanical part.
The approximation of the electric potential must be able to model piezoelectric patches, and a constant
value is considered on each elementary domain while a cubic variation in each layer is used, based on the
polynomial expansion given in [2]. Furthermore, Murakami’s ZigZag functions [3] is superimposed for
the three displacement components for improving the accuracy for multilayered modeling. A plate/shell
FE is obtained with nine degrees of freedom (dof) per node for the mechanical part, twelve dofs if the
ZigZag functions are included, [4].

This FE is evaluated on some standard piezo-electric plate/shell tests including sensor and actuator
configurations. Tests concerning bimorph piezoelectric beam/plate/shell are presented in order to assess
the high-order kinematics and the ZigZag effect. The role of electrode segmentation, i.e. the size of
equipotential surfaces, on the electro-mechanical response has been also considered.

1 INTRODUCTION

Research and development concerning high-performance structures are very intense since some decades.
Structural health monitoring, active vibration damping, and energy harvesting are some examples of pos-
sible applications of a multifunctional structural component. Piezoelectric materials permit to convert
mechanical and electrical energy at frequency ranges that are most interesting for technical applications
such as vibration damping and rapid shape adaptation [5]. Development of theoretical and numerical
models for this kind of structures is very important and active. For this purpose and in the framework
of two-dimensional plate/shell models, different choices can be made for the mechanical approximation
and the following classification is classically admitted for the variation in the thickness direction: (i)
Equivalent Single Layer (ESL) models, in which the number of unknowns is independent of the layer
number; (ii) Layer-Wise (LW) descriptions, for which the number of unknowns and, thus, the computa-
tional cost increases with the number of layers. While most developments employ an ESL description
for the mechanical behavior, and particularly the First order Shear Deformation Theory (FSDT), a Layer-
Wise description is necessary for the piezoelectric approximation to impose electric boundary conditions
at each piezoelectric layer interfaces, i.e., the electrodes, within the stack. Inside each piezoelectric layer,
the electric potential can be linear, quadratic or higher and a comparison has been proposed in [6].
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A review of different approaches is available in [7, 8] and in the framework of the Carrera Unified
Formulation (CUF) in [9]. For the FE approximations, a recent review limited to shell models is also
given in [10].

The limitation of the FSDT model is related to the constant transverse displacement hypothesis, in-
ducing no thickness change and the use of the reduced 2D constitutive law. The use of the full 3D
constitutive law is an important feature for a consistent representation of complex physical interactions
like multi-field coupling. Furthermore, accurate modeling of thick structures needs the transverse normal
stress and the 3D constitutive law.

Therefore, a high-order model is chosen with sinus function for the in-plane displacements and
quadratic assumption along the thickness of the transverse deflection. Thus, the 3D constitutive law
is retained and a parabolic distribution of the transverse shear strains and a non linear variation of the
transverse normal strain are recovered. In order to introduce transverse strain discontinuities required
to fulfill the interlaminar equilibrium, Murakami’s Zig-Zag function (MZZF) [3] is superimposed to the
high-order ESL kinematics for the 3 displacement components. Note that MZZF does not depend on
the constitutive coefficients and is, hence, attractively simple in conjunction with three-dimensional con-
stitutive laws including multi-field coupling. Based on this kinematics, an 8-node plate Finite Element
(FE) is proposed, free of numerical illness such as transverse shear and Poisson lockings, oscillation and
spurious mechanics [1]. The approximation of the electric potential must be able to model piezoelectric
patches, and a constant value is considered on each elementary domain while a cubic variation in each
layer is used, based on the polynomial expansion given in [2, 11].

The paper is organized as follows: Section 2 describes the plate problem, the approximations for the
displacement and the electric potential and the system to be solved. The resulting FE are evaluated in
Section 3 for a composite plate, in order to talk about the electrode segmentation modelling.

2 Description of the plate problem

2.1 Governing equations

Let us consider a plate occupying the domain V = Ω× [− e
2 ≤ z≤ e

2 ] in a Cartesian coordinate system
(x1,x2,x3 = z). The plate is defined by an arbitrary surface Ω in the (x1,x2) plane, located at the midplane
for z = 0, and by a constant thickness e.

The displacement is denoted u⃗(x1,x2,z) and the electric potential is φ(x1,x2,z). εi j(x1,x2,z) and
E⃗(x1,x2,z) are the strain tensor components and the electric field vector, respectively, deduced from
primal variables by the geometric relations. Furthermore, σi j(x1,x2,z) and D⃗(x1,x2,z) are the conju-
gated fluxes (stress tensor components and dielectric displacement vector, respectively) obtained from
the constitutive equations given in the next subsection.

2.1.1 Constitutive relation

The 3D constitutive equation for a linear piezoelectric material is given by the following set of coupled
equations [12] for a layer (k):

[σ(k)] = [C(k)] [ε(k)]− [e(k)]T [E(k)] (1a)

[D(k)] = [e(k)] [ε(k)]+ [ε(k)] [E(k)] (1b)

where we denote by [C] the matrix of elastic stiffness coefficients taken at constant electric field, by [e] the
matrix of piezoelectric stress coefficients and by [ε] the matrix of electric permittivity coefficients taken
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at constant strain. The explicit form of these matrices can be found in [10] for an orthotropic piezoelectric
layer polarized along the thickness direction z. Eq. (1a) expresses the piezoelectric converse effect for
actuator applications, whereas Eq. (1b) represents the piezoelectric direct effect which is exploited in
sensor applications. Note that the constitutive law is expressed in the local reference frame associated to
each layer.

2.1.2 The weak form of the boundary value problem

The classical piezoelectric variational formulation of [13] is employed in which the primary field
variables are the “generalized displacements”, i.e. the displacement field, and the electrostatic potential.
Using a matrix notation and for admissible virtual displacements u⃗ ∗ and electric potential φ∗ (virtual
quantities are denoted by an asterisk), the variational principle is given by:

∫

V
ρ[u ∗]T [ü ]dV =−

∫

V
[ε(u ∗)]T [σ(u ,φ)]dV +

∫

V
[u ∗]T [ f ]dV +

∫

∂VF

[u ∗]T [F ]d∂V

+
∫

V
[E(φ∗)]T [D(u ,φ)]dV −

∫

V
q φ∗ dV −

∫

∂VQ

Q φ∗ d∂V
(2)

where [ f ] is the body force vector, [F ] the surface force vector applied on ∂VF , q the volume charge
density, Q the surface charge density supplied on ∂VQ and ρ is the mass density. Finally, ε(u ∗) and
E(φ∗) are the virtual strain and virtual electric field that satisfy the compatibility gradient equations. In
the remainder of this article we will refer only to static problems, for which the left-hand side term is set
to zero. Furthermore, body forces and volume charge densities will be discarded ([ f ] = [0]; q = 0).

2.2 The mechanical part

2.2.1 The displacement field

Based on the sinus model, see [14], a new plate model which takes into account the transverse normal
stress is presented in this section. This extension is based on following developments

• various models for beams, plates and shells based on the refined sinus theory, see [14, 15, 16, 17,
18, 19];

• our previous paper on a 7 parameter model for thermo-mechanical analysis [1].

In the framework of ESL approach, the kinematics of our model is assumed to have the following
particular form ⎧

⎨

⎩

U1(xα,z) = u 0
1(xα)+ z u 1

1(xα)+ f (z) u f
1(xα)

U2(xα,z) = u 0
2(xα)+ z u 1

2(xα)+ f (z) u f
2(xα)

U3(xα,z) = u 0
3(xα)+ z u 1

3(xα)+ z2 u 2
3(xα)

(3)

where α ∈ {1,2} and i ∈ {1,2,3}. In Eq. (3), the superscript is associated to the expansion order in
z while the subscript is related to the component of the displacement. Thus, u 0

i are the displacements
of a point of the reference surface while (u 1

α, u f
α) are measures for rotations of the normal transverse

fiber about the axis (0,xα). The functions u α
3 permit to have a non-constant deflection for the transverse

fiber and allow to have non zero transverse normal stretch. Furthermore, the quadratic assumption for
the transverse displacement avoids the occurrence of Poisson (or thickness) locking, see [1].

In the context of the sinus model, we have

f (z) =
e
π

sin
πz
e

(4)
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It must be noticed that the classical homogeneous sinus model [14] can be recovered from Eq. (3)
assuming u1

α =−u0
3,α, and neglecting the unknown functions uα

3.

2.2.2 The Murakami’s Zig-Zag terms

In order to evaluate the influence of Zig-Zag terms [3] in a high-order ESL model, the following
displacement per layer (k) are added to Eq. (3):

⎧
⎨

⎩

U1
(k)(xα,z) = Z(k)(z) uz

1(xα)
U2

(k)(xα,z) = Z(k)(z) uz
2(xα)

U3
(k)(xα,z) = Z(k)(z) uz

3(xα)
(5)

with
Z(k)(z) = (−1)k ζk(z) and ζk(z) =

2
ek

(
z− 1

2
(zk + zk+1)

)
(6)

where ek is the thickness of the kth layer while (zk,zk+1) are the bottom and top coordinates of this layer.
It is obvious that Z(k)(z) is a piecewise linear function with bi-unit amplitude for all the layers as we have
ζk(z) ∈ [−1,1]. Note that, despite the Z(k)(z) function depends on the layer index inside the stack, the
amplitudes uz

i are unique for the whole laminate, i.e., the ESL framework is still preserved.

2.3 The electric part

On each elementary domain Ωe, the electric potential is assumed to be constant. Therefore, no vari-
ation with respect to xα is considered. A cubic layerwise (LW) description is used across the thickness,
according to the approximation introduced in [2] and used in [11]: In each layer (k), the electric potential
distribution is described by the normal electric field components at the bottom and top surfaces, denoted
E3b and E3t , respectively, and the potential difference ∆φ between top and bottom surface. Using these
dofs, the approximation of the electric potential can be written as:

[
φ(k)
]
=
[
Fφ
] [

Cst(k)φ

] [
qe(k)

φ

]
(7)

where the following definitions have been introduced:

[
Fφ
]
=
[

1 z z2 z3 ] ;
[
qe(k)

φ

]T
=
[

E3b
(k) ∆φ(k) E3t

(k)
]

(8)

and
[
Cstφ(k)

]
is a (4× 3) matrix containing constant coefficients. The electric field vector in each layer

[
E(k)

]
is then obtained as:

[
E(k)

]
=

⎡

⎢⎣
0
0
−φ(k)

,3

⎤

⎥⎦ = [FE ]
[
CstE (k)

] [
qφ

e(k)
]

with [FE ] =
[

1 z z2 ] (9)

where
[
CstE (k)

]
is a (3× 3) matrix. So, the adopted approximation yields a quadratic transverse electric

field across the thickness of each layer.
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2.4 The system to be solved

The FE approximations are not detailed here for the sake of brevity and can be found elsewhere
[10, 1]. The eight-node quadrilateral finite element is used and classical FE approximation is used for
the geometry. A special treatment is used to control the transverse shear locking by using a dedicated
interpolation for γα3

0 according to the methodology presented in [1]. Note that since the electric potential
is assumed to be constant on each elementary domain, there is no need to introduce any FE approximation
for this field.

The elementary matrices are then deduced considering the bi-dimensional weak form obtained from Eq.
(2). Assembling each elementary contribution in the global reference frame, the following discrete form
of the coupled piezoelectric system is obtained:

[
[Kuu] [Kuφ]
[Kuφ ]T [Kφφ]

][
[q u]
[q φ]

]
=

[
[Lu]
[Lφ]

]
(10)

where [Kuu], [Kφφ] and [Kuφ] are the global stiffness, dielectric and piezoelectric matrices of the plate,
respectively. The mechanical dofs are in the vector [q u], while the electrical dofs are in the vector [q φ]
and we have at the elementary level

[q u
e] =

[(
u0

1 u0
2 u0

3 u1
1 u1

2 u1
3 u f

1 u f
2 u2

3 uz
1 uz

2 uz
3
)

i=1,8

]

[
q φ

e]=
[(

E3b
(k) ∆φ(k) E3t

(k)
)

k=1,Nl

] (11)

with Nl the number of layers. From the mechanical point of view, the Zig-Zag dofs can be activated or
not and comparisons will be presented in the next section dedicated to numerical evaluations using no
Zig-Zag dof (P9), using only in-plane Zig-Zag dof uz

α (P9Z) and with all the Zig-Zag dof uz
i (P9ZZ).

Finally, the three models use 9, 11 or 12 kinematical unknown functions and the associated FE has 72,
88, 96 mechanical dofs per element, respectively.

Since the electric potential is assumed constant on each FE, the assembly involves only the approx-
imation along the thickness. A piezoelectric patch comprising several FEs can be defined through the
imposition of the equipotential condition between electrodes: the same ∆φ is imposed on the piezo-
electric layer for all elements belonging to the same patch. From the numerical point of view, this is
accomplished through linear homogeneous and non-homogeneous Multi-Point Constraints (MPC) using
penalty function method.

In Eq. (10), the load vectors [Lu] and [Lφ] represent the external loading from applied forces and pre-
scribed charges, respectively. Essential boundary conditions (i.e., prescribed displacements and electric
potentials) are imposed numerically by a penalty technique. The coupled system is then solved by the
classical static condensation procedure for the electrical dof:

[q φ] = [Kφφ]
−1([Lφ]− [Kuφ]

T [q u]) (12a)

which yields the following purely mechanical system with a modified equivalent stiffness matrix:

[
[Kuu]− [Kuφ][Kφφ]

−1[Kuφ]
T
]
[q u] = [Lu]− [Kuφ][Kφφ]

−1[Lφ] (12b)

In the remainder of the paper, [Lφ] = [0] will be considered.
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3 Numerical results: clamped composite plate

This test is interesting to evaluate the segmentation of a piezoelectric layer using different number
of patches. It considers the sensory response of a cantilever, rectangular, hybrid sandwich plate with
one edge clamped and other edges free subjected to a uniform pressure load according to the following
data [20]:

geometry rectangular plate a×b with a= 10 mm, a/b= 2 and total thickness e = 1 mm (length-to-
thickness ratio S= 10)

materials seven-layers plate (pz,0◦,90◦,core,90◦,0◦, pz); the outer piezoelectric layers of thickness
0.1 e are made out of PZT-5A material; each layer constituting the laminated skins has a thickness
0.04 e and the core thickness equals 0.64 e. The material properties for PZT-5A, skin layers and
core are given in Tab. 1

boundary conditions clamped at x1 = 0; uniform pressure load p0; piezoelectric layers can be in open
circuit (∆φ let free) or in closed circuit (∆φ = 0)

mesh three regular meshes 5×2, 10×4 and 20×8 are used

results and locations transverse displacement at the tip and piezoelectric potential in the element close
to the clamped edge. They are made non-dimensional according to

u3 = u3
(
102E2

(core))/
(
eS4 p0

)

φ = φ
(
104E2

(core) d0
)
/
(
eS2 p0

) with d0 = 374 10− 12 CN− 1

Prop. PZT-5A skin core Prop. PZT-5A skin core
E1 [GPa] 61.0 172.5 0.276 e15 [C/m2] 12.3 0 0
E2 [GPa] 61.0 6.9 0.276 e24 [C/m2] 12.3 0 0
E3 [GPa] 53.2 6.9 3.45 e31 [C/m2] -7.2 0 0

ν23 0.38 0.25 0.02 e32 [C/m2] -7.2 0 0
ν13 0.38 0.25 0.02 e33 [C/m2] 15.1 0 0
ν12 0.35 0.25 0.25 ε11 [nF] 15.3 ε0 ε0

G23 [GPa] 21.1 1.38 .414 ε22 [nF] 15.3 ε0 ε0
G13 [GPa] 21.1 3.45 .414 ε33 [nF] 15. ε0 ε0
G12 [GPa] 22.6 3.45 0.1104

Table 1: Material properties employed in the considered problems.

This test can be used to compare the effect of the electrode segmentation: using the proposed FE
meshes, the electrode sensor surface is subdivided in 1, 10, 40, 160 patches through the imposition of
equipotential conditions.

Tab. 2 presents the convergence properties of the P9 FE when only one patch is used for each piezo-
electric layer. In the open circuit configuration, the equipotential condition enforces ∆φ in each layer
to be the same for all elements. In the closed circuit condition, ∆φ = 0 for all elements (equipotential
condition) and the maximum electric potential value inside the piezoelectric layers is reported. Note that
the cubic approximation for φ allows to recover the electric potential induced by the local bending of the
piezoelectric layers.
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elec BC mesh 5×2 10×4 20×8
OC u3 22.649 (-1.9) 22.967 (-0.5) 23.089

∆φbottom -23.003 (-2.7) -23.408 (-1.0) -23.649
∆φtop 24.473 (-2.6) 24.886 (-1.0) 25.129

CC u3 23.370 (-1.9) 23.698 (-0.3) 23.833
φMax -3.307 -5.212 -7.295

Table 2: Clamped composite plate with only one electric patch: convergence results for open circuit (OC) and
closed circuit (CC).

The maximum displacement is located at the center of the tip edge (a,b/2) while the maximum in-
duced electric potential (φmax for closed circuit) is in the FE close to the clamped edge. For the open
circuit, the convergence is very fast for both displacement and electric potential difference – the percent-
age of error with respect to the 20× 8 mesh results is indicated in parentheses. For the closed circuit,
an asymptotic value is recovered for the displacement whereas φmax still increases with mesh refine-
ment; this is due to the decreasing size of the FE at the clamp, which increasingly localizes the bending
deformation of the piezoelectric layers.

The distribution of the electric potential across the thickness is illustrated for the two electric bound-
ary conditions in Fig. 1. The non-linear variation across the bottom and top piezoelectric layers is visible
on both graphs and increases with mesh refinement. Due to the equipotential condition, it has no influ-
ence on the ∆Φmax for the open circuit (left) but it is directly related to the Φmax for the closed circuit
(right). This non-linear effect measures the local bending deformation of the piezoelectric layers and is
accordingly larger at the clamped edge than at the free tip of the plate.

Finally, the effect of electrode segmentation is discussed in Tab. 3 for the open circuit boundary
condition. The corresponding distribution along the length of the plate of the electric potential difference
is illustrated in Fig. 2 for all considered meshes and electrode segmentations. The induced potential
difference ∆φ reported in Tab. 3 is taken at the electrode next to the clamped edge, i.e., where it has
its maximum value. Comparing the results for 10 patches obtained with two different meshes allows to
appreciate the role of the mesh refinement: a finer mesh increases the tip displacement and enhances the
sensed voltage. The same mesh with 10×4 elements is then used with two different number of electric
patches, i.e., with different sizes of the equipotential surfaces: a very small influence on the tip deflection
can be seen, with u3 slightly larger when the equipotential surfaces are larger; on the contrary, the electric
potential induced at the clamped edge is clearly higher the smaller the electrode. Finally, considering
the 20×8 with 160 patches (i.e., one electrode per FE), the tip displacement is slightly higher due to the
refined mesh and the sensed voltage is further increased due to both, the larger deflection and the reduced
electrode’s size at the clamp.

4 Conclusion

This paper has presented a new family of FE for piezoelectric composite plates. A high-order ESL
kinematic model is considered that includes the sinus function for the in-plane displacements, a quadratic
polynomial expansion for the transverse displacement and Zig-Zag functions for introducing slope dis-
continuities at layers’ interfaces for both, the in-plane and the transverse displacements. A LW cubic
approximation is used for the electric potential in order to capture its non-linear distribution induced
by the local bending of the piezoelectric layer; the elementary domain is considered as an equipotential
surface (constant electric potential).
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mesh 5 �2
mesh 10 �4
mesh 20 �8

S = 10; open circuit 
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�(x1 = 0): clamped edge
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mesh 5 �2
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S = 10; close circuit 

z
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�(x1 = 0): clamped edge
�5 0

�(x1 = a): free edge
0 0.1 0.2

Figure 1: Clamped composite plate: electric potential distribution across the thickness for the OC (left) and CC
(right) electric boundary conditions.

patch Nb 10 40 160
mesh 5×2 10×4 10×4 20×8
u3 22.230 22.533 22.510 22.609
∆φbottom -62.776 -63.503 -80.004 -91.988
∆φtop 64.071 64.827 81.147 92.884

Table 3: Clamped composite plate in OC configuration: evaluations for different FE meshes and equipotential
surface sizes.

mesh 20x8; 1 electrd
mesh 5x2; 10 electrd
mesh 10x4; 10 electrd
mesh 10x4; 40 electrd
mesh 20x8; 160 electrd

��  (Top layer)

0

20

40

60

80

100

x1

0 2 4 6 8 10

��  (Bottom layer)

mesh 20x8; 1 electrd
mesh 5x2; 10 electrd
mesh 10x4; 10 electrd
mesh 10x4; 40 electrd
mesh 20x8; 160 electrd

�100

�80

�60

�40

�20

0

x1

0 2 4 6 8 10

Figure 2: Clamped composite plate in OC configuration: distribution along the length of the sensed voltage at the
top (left) and bottom (right) piezoelectric layer for different meshes and electrode segmentation.

8



����

O. Polit, M. D’Ottavio and P. Vidal

The element has been validated through linear static case studies for both sensor and actuator con-
figurations as well as homogeneous and laminated plates. The role of electrode segmentation, i.e., the
size of equipotential surfaces, on the electro-mechanical response has been also evaluated. The results
are in good agreement for actuator and sensor configurations for thin to very thick cases. The proposed
P9ZZ FE, using only 12 mechanical dof per node, is very accurate, simple to use, without any numerical
problem and could be used for a large range of plate problems involving piezoelectric patches or layers.
Future works are pointed towards the extension of this model to piezoelectric shell structures.
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