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Abstract: This paper addresses the problem of exponential synchronization in continuous-time
complex dynamical networks with both time-delayed and non-delayed interactions. We employ a
proportional integral derivative (PID) control strategy and a dynamic event-triggered approach to
investigate this synchronization problem. Our approach begins with constructing a general model for
complex dynamical networks that incorporate delays. We then derive synchronization criteria based on
the PID control parameters, utilizing linear matrix inequality techniques in conjunction with a dynamic
event-trigger mechanism. The application of Lyapunov stability theory and inequality techniques
allows us to establish these criteria, considering the presence of hybrid delays. To illustrate the
effectiveness of our proposed model, we provide two numerical examples showcasing synchronization
dynamics. These examples demonstrate the successful theoretical results of a novel PID controller and
dynamic event-trigger mechanism.

Keywords: complex dynamical networks; exponential synchronization; Lyapunov-Krasovskii
functional; PID control
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1. Introduction

Complex dynamical networks (CDNs) are large-scale networks comprising numerous nodes
interconnected through specific topological links. CDNs with hybrid delays are crucial for modeling
and optimizing real-world systems that exhibit both continuous and discrete delays. These networks
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find applications in various industries, including communication networks, control systems, biological
systems, power systems, economics and finance, chemical engineering, transportation, environmental
sciences, mechanical systems and healthcare, such as in [1–9]. Hybrid delay models provide a robust
framework for analyzing and improving the behavior of complex systems in these domains by
considering the interplay between continuous dynamics and discrete events, ultimately leading to
enhanced performance and efficiency. The understanding and management of complex systems,
whether observed in natural phenomena or constructed systems like biological neuron networks,
power grids, social connections or the Internet, have seen significant advancements in recent research,
as highlighted in [10–15]. To gain deeper insights into contemporary systems, it becomes imperative
to examine both the network structure and dynamic properties of complex networks.

Recent studies have extensively investigated the synchronization dynamics of CDNs composed of
coupled oscillators, deriving synchronization criteria for networks with coupling delays, considering
both delay-independent and delay-dependent stability of the synchronization manifold. Moreover,
researchers have increasingly focused on synchronization phenomena within complex networks,
serving as a framework for understanding various phenomena. Synchronization occurs when the
discrepancy between driving and responding vectors approaches zero in norm. Furthermore, the
concept of stability, as explored in works such as [16–22], also provides insights into the idea of
synchronization.

Achieving synchronization among CDN nodes is a complex challenge influenced by architectural
intricacies, network topology, environmental factors, and connectivity efficiency. Control mechanisms
play a pivotal role in enabling engineering system designers to achieve impressive performance by
seamlessly adapting to varying environmental conditions. This adaptability is crucial for engineering
systems to function effectively and reliably in diverse contexts. Consequently, a critical area of
research revolves around addressing synchronization challenges in CDNs, particularly through the
incorporation of feedback control strategies. Various control approaches have emerged in the
literature, including model predictive control, state feedback control, stochastic control, adaptive
control, non-fragile control, and pinning control, as documented in prior research [23–27].

Real-world networks, such as mobile communication systems, citation networks, and
cyber-physical setups, frequently depend on time-triggered schemes for data exchange among
sensors, controllers, and actuators. However, there are disadvantages to using synchronization
methods designed for complex networks with time-triggered schemes. Recent research has explored
diverse aspects, including the synchronization of real-time tasks in time-triggered networks [28],
adaptive pinning synchronization in networks with negative weights and its application in traffic road
networks [29], enhancing security in time-triggered real-time systems through task replication [30],
and achieving exponential synchronization of chaotic Lur’e systems with time-triggered intermittent
control [31]. To effectively result of the burdens on communication networks, the adoption of
event-triggered methodologies has emerged as a promising strategy. The fundamental premise
underlying event-triggered control/communication schemes revolves around the concept that the
execution of control inputs and system transmissions is dictated by the occurrence of predefined
“events.” This approach is engineered to uphold the intended control performance while
simultaneously alleviating the strain on communication networks [32, 33].

In response to the challenges posed by communication networks, the adoption of event-triggered
methodologies has emerged as a promising strategy. Event-triggered control/communication schemes
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stand in contrast to conventional time-triggered approaches, effectively alleviating the strain on both
network communication and controller computational costs. Existing event-triggered control
techniques can typically be classified into four main categories: dynamic event-triggered control,
self-triggered control, periodic event-triggered control and continuous event-triggered control.
Various event-triggered synchronization control strategies tailored for complex dynamical networks
have been proposed in several sources, utilizing mathematical tools such as Lyapunov stability theory,
linear matrix inequalities, Markov process theory, and impulsive control theory to formulate
event-triggered controllers [34–41]. For instance, in [35], a robust H∞ pinning synchronization
method for complex networks with event-triggered communication is introduced, employing
Lyapunov-Krasovskii functional (LKF) and matrix inequality techniques for controller design.
Similarly, [36] explores an event-triggered pinning control approach for discrete-time stochastic
complex dynamical network synchronization, utilizing Markov process theory and stochastic analysis
for stability analysis. Another study focuses on coupled reaction-diffusion complex network systems,
applying finite-time stability theory and LKF to design event-triggered controllers, which outperform
traditional continuous-time control methods [37]. Moreover, [38] suggests an event-triggered delayed
impulsive control approach for CDNs with coupling delay, utilizing LKF and impulsive control
theory. In [42], a dynamic event-triggered control method is introduced as an alternative to static
event-triggered control systems, aiming to further reduce information usage and energy consumption.
However, dynamic approaches introduce complexities such as Zeno behavior, where an infinite
number of triggers occur in a finite time span, posing challenges for event-triggered control systems.
Consequently, it becomes crucial for event-triggering conditions to ensure a minimum constraint on
time intervals between triggering moments to prevent Zeno behavior.

Recent literature has explored the concept of dynamic event-triggered control in various contexts,
as evident from works such as [43–50]. [43] likely contributes to the field by advancing dynamic
event-triggered control methodologies and their applications. [45] may focus on dissipative systems,
shedding light on energy-efficient control strategies. The authors in [46] explore novel triggering
mechanisms and performance analyses in specific scenarios. [47] studied event-triggered control’s
utilization within cluster systems, optimizing resource allocation. The authors of [48] researched the
balance between communication and control efficiency in event-triggered systems. The authors
in [49] introduced a disturbance-based switching mechanism for robust synchronization, while [50]
proposed a memory-based strategy for efficient global synchronization. These contributions expand
the applicability of event-triggered control in chaotic Lurie systems, addressing challenges related to
disturbances and global synchronization. It is well-known that proportional-integral-derivative (PID)
controllers have been widely applied in industry for operation simplicity and good system
performance. In [51], researchers utilized the linear matrix inequality technique to create an
event-triggered fuzzy PID controller. This research effectively expanded the use of event-triggering
mechanisms into PID control for linear time-invariant systems. However, only a few works have
investigated the feasibility of PID control applied to complex networks. Motivated by the discussions
above, this study aims to make significant contributions to PID control in CDNs with hybrid delays.
The main contributions of this research are outlined below:

• In this paper, there is the first attempt to study a synchronization of PID control problem in
CDNs by introducing a dynamic event-triggered mechanism. This novel combination aims to
achieve exponential synchronization for CDNs. This contribution advances the understanding of
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synchronization techniques in complex systems.
• Different from others in [52, 53], we have introduced a PID-based event-triggering mechanism

inspired by the structure of the traditional PID control law. This novel mechanism takes into
account the influence of the system’s proportional, integral and derivative components, with
parameters designed in harmony with those of the PID controller.
• To establish the theoretical support of our approach, we carefully construct a suitable LKF. We

derive its properties employing linear matrix inequalities (LMI), which facilitates the analysis of
the complex dynamical networks under consideration. This step is important in demonstrating
the feasibility of achieving exponential synchronization within our proposed framework.
• Recognizing the significance of real-world uncertainties, we intensively look into the impact of

parameter uncertainties on the considered system. Through rigorous analysis, we examine the
system’s exponential synchronization behavior using PID control parameters within the dynamic
event-trigger mechanism. This exploration of parameter uncertainties adds a layer of practical
relevance to the theoretical results.
• Finally, to show the effectiveness and validity of our theoretical contributions, we provide a

comprehensive numerical simulation. This showcases practical scenarios and demonstrates the
outcomes of our proposed approach.

The subsequent sections of the paper are organized as follows: Section 2 introduces essential
preliminaries and presents the problem formulation. Section 3 establishes the Exponential
Synchronization Criteria for general complex dynamical networks, employing the PID controller
within the dynamic event-trigger mechanism. Section 4 extends the analysis by incorporating
parameter uncertainties into the complex dynamical networks. This section critically examines the
resulting impact on exponential synchronization. The paper concludes with Section 5, where a
summary and conclusive remarks wrap up the discussion.

Notation: To be clear, the following symbols are first explained in a simple way
T : The transpose of a matrix or a vector.
Rn: The n-dimensional Euclidean space.
Rn×m: The set of all n × m real matrices.
W > 0: The matrix W is symmetric and positive definite.
z: Symmetric terms in a symmetric matrix.
In: Identity matrix.
diag{· · · }: A block-diagonal matrix.
λmax(G) (λmin(G)): The largest (smallest) eigenvalue of G.
‖·‖: The Euclidean norm for given vector.

2. Problem formulation

Consider a controlled complex network consisting of N nodes with hybrid delays [5, 16, 54]. Each
node of the dynamical network is a nonautonomous n-dimensional systems, which is given by

ẋi(t) = A xi(t) + f (xi(t)) +

N∑
j=1

Ei jΘ1x j(t) +

N∑
j=1

Hi jΘ2x j(t − α(t)) +

N∑
j=1

Ji jΘ3

∫ t

t−δ
x j(s)ds

AIMS Mathematics Volume 8, Issue 12, 28976–29007.
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+ui(t), (2.1)

where i = 1, 2, . . . ,N is the number of nodes in the Network. xi(t) = {xi1(t), xi2(t), . . . , xin(t)} is the
state variable of the ith node at time t. A is the known state matrix. f (.) : Rn → Rn is the nonlinear
function which is continuous and differentiable that represents the dynamical behaviors of the system.
The matrices Ei j, Hi j and Ji j represent the outer coupling and network topology structure. When
there is a direct connection from node i to node j, the values are Ei j > 0, Hi j > 0 and Ji j > 0;
otherwise, they are 0. These matrices also satisfy the conditions Eii = −

∑N
j=1 Ei j, Hii = −

∑N
j=1 Hi j and

Jii = −
∑N

j=1 Ji j to maintain internal consistency. Θ1, Θ2 and Θ3 represent the inner coupling matrices
which interconnect the subsystems. α(t) is the time varying discrete delay, and δ is the distributed delay,
satisfying the condition 0 ≤ α(t) ≤ α and 0 ≤ α̇(t) ≤ ς ≤ 1. ui(t) is the control input to be designed.

Now, consider the reference node S (t) ∈ Rn in the form which satisfies

Ṡ (t) = A S (t) + f (S (t)). (2.2)

Define the synchronization error as ϕ̇i(t) = ẋi(t) − Ṡ (t). Then, by subtracting (2.2) from (2.1), we
have the dynamical error system as:

ϕ̇i(t) = A ϕi(t) + G (ϕi(t)) +

N∑
j=1

Ei jΘ1ϕ j(t) +

N∑
j=1

Hi jΘ2ϕ j(t − α(t))

+

N∑
j=1

Ji jΘ3

∫ t

t−δ
ϕ j(s)ds + ui(t), (2.3)

where G (ϕi(t)) = [ f (xi(t)) − f (S (t))]. For general complex dynamical networks with network
topologies, we propose PID control protocols, which are described by

Ψi(t) = UiPϕi(t) + UiI

∫ t

0
ϕi(s)ds + UiDϕ̇i(t), (2.4)

where UP > 0, UI > 0 and UD > 0 are the proportional, integral and derivative control gain values,
respectively, which are to be designed for the ith node.

Remark 2.1. PID control is a well known effective approach to various real-world control
challenges. It is referred to as a universal controller because the proportional gain UP increases
control effort when there is a significant control error-making its function quite clear. With the
integral action (UI), the subsequent control uses previous control error values, and the derivative
gain (UD) relies on expectations of future error values. In a dynamic event-triggered control system,
the main goal is to minimize information and energy sources. The PID controller plays a crucial role
by boosting control efforts when errors are significant, fitting well with the dynamic nature of the
CDNs. Adding the integral action lets the control system learn from past data, and the derivative gain
helps predict future errors—useful for navigating the changing dynamics of complex networks. In
dynamic event-triggered control systems, PID works smoothly, making decisions that align with the
goal of minimizing information use.

In order to reduce the communication burden of the shared network in the control process, in this
paper, a dynamic event-triggered mechanism is introduced to judge when the measured data should be
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transmitted to the observer. For clarity of the dynamic event-triggered mechanism, let us define the
triggering time sequence for the ith node iteratively expressed as ti

k+1 = inf{t > ti
k|Li(t) < 0}, and the

event generator function Li(·) can be taken from [55] and can be given by

Li(t) =
1
υi

Di(t) + µiΨ
T
i (t)Ψi(t) − ωT

i (t)ωi(t), (2.5)

where υi and µi are two given positive scalars. For t ∈ [ti
k, t

i
k+1), ωi(t) is defined by,

ωi(t) = Ψi(t) − Ψi(ti
k), (2.6)

where Ψi(ti
k) is the ith node of the control signal at the earliest triggering instant. The triggering instants

are denoted by {ti
k}
∞
k=0 and ti

0 = 0. Also, the internal dynamic variable Di(t) should satisfy

Ḋi(t) = −ρiDi(t) − ωT
i (t)ωi(t) + µiΨ

T
i (t)Ψi(t). (2.7)

Here, ρi is the scalar value. From the above equation, Di(0) > 0 is the initial condition.
Moreover, for all t ≥ 0,

Ḋi(t) ≥ −ρiDi(t) −
1
υi

Di(t).

By using this, we can easily obtain

Di(t) ≥ Di(0)e−(ρi+
1
υi

)t
> 0.

For the ith node, the actual input actuator can be chosen as

ui(t) = ui(ti
k) = −Ψi(ti

k), ∀t ∈ [ti
k, t

i
k+1). (2.8)

The following error dynamic system can be obtained by applying (2.6) and (2.8) to the error
system (2.3):

ϕ̇i(t) = A ϕi(t) + G (ϕi(t)) +

N∑
j=1

Ei jΘ1ϕ j(t) +

N∑
j=1

Hi jΘ2ϕ j(t − α(t))

+

N∑
j=1

Ji jΘ3

∫ t

t−δ
ϕ j(s)ds − Ψi(t) + ωi(t). (2.9)

By (2.4) and the system (2.9), we can obtain the following:

ϕ̇i(t) = A ϕi(t) + G (ϕi(t)) +

N∑
j=1

Ei jΘ1ϕ j(t) +

N∑
j=1

Hi jΘ2ϕ j(t − α(t))

+

N∑
j=1

Ji jΘ3

∫ t

t−δ
ϕ j(s)ds −UiPϕi(t) −UiI

∫ t

0
ϕi(s)ds −UiDϕ̇i(t) + ωi(t). (2.10)
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The error system can be written in compact form as

ϕ̇(t) = A ϕ(t) + G (ϕ(t)) + (E ⊗ Θ1)ϕ(t) − (H ⊗ Θ2)ϕ(t − α(t)) + (J ⊗ Θ3)
∫ t

t−δ
ϕ(s)ds −UPϕ(t)

−UI

∫ t

0
ϕ(s)ds −UDϕ̇(t) + ω(t). (2.11)

The upcoming Assumptions, Lemmas and Definitions are very useful to prove our theoretical
results.
Assumption H1. [55] The nonlinear function f (·) : Rn → Rn satisfies the following the sector-bounded
condition:

[ f (x) − f (y) − Υ1(x − y)]T [ f (x) − f (y) − Υ2(x − y)] ≤ 0,

for any x, y ∈ Rn, where Υ1 and Υ2 are known constant matrices.

Lemma 2.2. [55] The following inequality holds for the H1, for the matrices Υ1 and Υ2 such that[
ϕ(t)

G (ϕ(t))

]T [
Υ̂1 Υ̂2

∗ I

] [
ϕ(t)

G (ϕ(t))

]
≤ 0,

where

Υ̂1 =
(IN ⊗ Υ1)T (IN ⊗ Υ2) + (IN ⊗ Υ2)(IN ⊗ Υ1)T

2
, Υ̂2 =

(IN ⊗ Υ2)T + (IN ⊗ Υ1)T

2
.

Lemma 2.3. (Schur Complement) [56] The LMI, U =

[
U11 U12

U21 U22

]
< 0, is equivalent to U22 < 0,

U11 −U12U −1
22 U T

12 < 0.

Definition 2.4. [57] The complex dynamical network with hybrid delays (2.1) is said to be
exponentially synchronized with target node (2.2) if there exists two constants ε > 0 and M > 0 such
that

‖xi(t) − S (t)‖ ≤ Me−εt, i = 1, 2, . . . ,N,

for t ≥ 0 and any initial conditions.

The goal of this research is to develop a set of PID controllers (2.4) in order to guarantee the
exponential synchronization of the CDNs (2.1) and response system (2.2). Specifically, we are interest
in if the CDN with hybrid delay error system (2.11) is exponentially stable.

3. Main results

The following theorems, when applied to a dynamic event-triggered PID control method with linear
matrix inequalities, would enforce the appropriate exponential synchronization of CDNs with hybrid
delays.
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Theorem 3.1. If given parameters α, ς ≤ 1, ρ, µ, υ, β, UP, UI and UD and the Assumption H1
are true, then the CDN (2.1) is said to be exponentially synchronized with (2.2) if there exist positive

definite matrices Cr (r = 1, 2, . . . , 5), B1, B2 and Wa =

[
W1 W2

z W3

]
> 0, Wb =

[
W4 W5

z W6

]
> 0

and appropriate dimension matrices Nr (r = 1, 2, . . . , 8) and positive scalars ε1 and ε2, such that the
following LMIs hold:

J =
[
J11×11

]
< 0, (3.1)

where matrix entries are provided as follows, with any missing entries assumed to be zero:

J11 = (B1 + BT
1 ) + C1 + C2 + B2 + ςC5 + 2βB1 + 2βW1 + 2βW4 + U T

P Ξ1UP + 2
[
N1A + N1(E ⊗

Θ1) − N1UP

]
+ ε1U T

P Ξ3UP − ε2Υ̂1; J12 = 2βW T
2 + N T

1 (H ⊗ Θ2)T + N2

[
A + (E ⊗ Θ1) − 2UP

]
;

J13 = U T
P Ξ1UI −N1UI +N3

[
A + (E ⊗Θ1)−UP

]
+2ε1U T

P Ξ3UI; J14 = B1 +W T
1 +W T

4 +U T
P Ξ1UD−[

N1UD + N1

]
+ N4

[
A + (E ⊗Θ1)−UP

]
+ 2ε1U T

P Ξ3UD; J15 = (1− ς)W3 + N5

[
A + (E ⊗Θ1)−UP

]
;

J16 = N1(J ⊗Θ3) + N6

[
A + (E ⊗Θ1) −UP

]
; J17 = N7

[
A + (E ⊗Θ1) −UP

]
+ 2βW5; J18 = W T

5 +

N8

[
A + (E ⊗Θ1)−UP

]
; J19 = N T

1 ; Y110 = N T
1 −ε2Υ̂2; J22 = −e−2βς(1−ς)C2 +2βW3 +N2(H ⊗Θ2);

J23 = N2UI +N3(H ⊗Θ2); J24 = W2−

[
N2 +N2UD

]
+N4(H ⊗Θ2); J25 = (1−ς)W3 +N5(H ⊗Θ2);

J26 = N2(J ⊗Θ3) + N6

[
H ⊗Θ2

]
; J27 = N7(H ⊗Θ2); J28 = N8(H ⊗Θ2);J29 = N T

2 ; J210 = N T
2 ;

J33 = U T
I Ξ1UI − 2N3UI + ε1U T

I Ξ3UI; J34 = U T
I Ξ1UD −

[
N3UD + N3

]
+ ε1 + U T

I Ξ3UD −N4UI;

J35 = −N5UI; J36 = N3

[
J ⊗Θ3

]
−N6UI; J37 = −N7UI; J38 = −N8UI; J39 = N T

3 ; J310 = N T
3 ;

J44 = U T
D Ξ1UD + C3 + C4 − 2

[
N4UD + N4

]
+ ε1U T

D Ξ2UD; J45 = −

[
N5UD + N5

]
; J46 = N4(J ⊗

Θ3) −
[
N6UD + N6

]
; J47 = W T

5 −

[
N7UD + N7

]
; J48 =

[
N8UD + N8

]
; J49 = N T

4 ; J410 = N T
4 ;

J55 = −(1 − ς)e−2βςC4; J56 = N5(J ⊗ Θ3); J59 = N T
5 ; J510 = N T

5 ; J66 = − e2βς

δ
C5 + N6(J ⊗ Θ3);

J67 = N7(J ⊗Θ3); J68 = N8(J ⊗Θ3); Y69 = N T
6 ; Y610 = N T

6 ; J77 = −e−2βςC1 + 2βW6; J78 = W T
5 ;

J79 = N T
7 ; J710 = N T

7 ; J88 = −e−2βςC3; J89 = N T
8 ; J810 = N T

8 ; J99 = −Ξ1 − ε1I; J1010 = −ε2I;
J1111 = diag{−ρ1+2β+µ1

υ1
, −ρ2+2β+µ1

υ2
, −ρN+2β+µ1

υN
},

Ξ1 = diag
{

1
υ1

I, 1
υ2

I, . . . , 1
υN

I
}
, Ξ2 = diag

{
µ1
υ1

I, µ2
υ2

I, . . . , µN
υN

I
}
, Ξ3 = diag

{
µ1I, µ2I, . . . , µN I

}
.

Proof. Consider the Lyapunov function according to the error system (2.11) that can be given by

V(t) =

7∑
i=1

Vi(t), (3.2)
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where

V1(t) = ϕT (t)B1ϕ(t),

V2(t) =
[
ϕT (t) ϕT (t − α(t))

] [ W1 W2

z W3

] [
ϕ(t)

ϕ(t − α(t))

]
,

V3(t) =
[
ϕT (t) ϕT (t − α)

] [ W4 W5

z W6

] [
ϕ(t)

ϕ(t − α)

]
,

V4(t) =

∫ t

t−ς
e2β(s−t)ϕT (v)C1ϕ(v)dv +

∫ t

t−α(t)
e2β(s−t)ϕT (v)C2ϕ(v)dv,

V5(t) =

∫ t

t−ς
e2β(s−t)ϕ̇T (v)C3ϕ̇(v)dv +

∫ t

t−α(t)
e2β(s−t)ϕ̇T (v)C4ϕ̇(v)dv,

V6(t) =

∫ t

0
e2β(s−t)ϕT (v)B2ϕ(v)dv +

∫ 0

−δ

∫ t

t+θ
e2β(s−t)ϕT (v)C5ϕ(v)dvdθ,

V7(t) =

N∑
i=1

1
υi

Di(t).

Hereafter, let us consider the following notations:

Y1(t) = ϕ(t); Y2(t) = ϕ(t − α(t)); Y3(t) =
∫ t

0
ϕ(v)dv; Y4(t) = ϕ̇(t); Y5(t) = ϕ̇(t − α(t));

Y6(t) =
∫ t

t−δ
ϕ(v)dv; Y7(t) = ϕ(t − α); Y8(t) = ϕ̇(t − α).

Now, taking the derivative of the considered Lyapunov function can be given by

V̇1(t) + 2βV1(t) = 2YT
1 (t)B1Y4(t) + 2βYT

1 (t)B1Y1(t), (3.3)
V̇2(t) + 2βV2(t) = 2YT

1 (t)W1Y4(t) + 2YT
2 (t)W T

2 Y4(t) + 2(1 − ς)YT
1 W2Y5(t)

+ 2(1 − ς)YT
2 (t)W3Y5(t) + 2βYT

1 (t)W1Y1(t) + 4βYT
1 (t)W2Y2(t)

+ 2βYT
2 (t)W3Y2(t), (3.4)

V̇3(t) + 2βV3(t) = 2YT
1 (t)W4Y4(t) + 2YT

7 (t)W T
5 Y4(t) + 2YT

1 W5Y8(t) + 2YT
7 (t)W6Y8(t)

+ 2βYT
1 (t)W4Y1(t) + 4βYT

1 (t)W5Y7(t) + 2βYT
7 (t)W6Y7(t), (3.5)

V̇4(t) + 2βV4(t) = YT
1 (t)C1Y1(t) − e−2βςYT

7 (t)C1Y7(t)
+ YT

1 (t)C2Y1(t) − e−2βς(1 − ς)YT
2 C2Y2(t), (3.6)

V̇5(t) + 2βV5(t) = YT
4 (t)C3Y4(t) − e−2βςYT

8 (t)C3Y8(t)
+ YT

4 (t)C4Y4(t) − e−2βς(1 − ς)YT
5 (t)C4Y5(t), (3.7)

V̇6(t) + 2βV6(t) = YT
1 (t)B2Y1(t) + ςYT

1 (t)C5Y1(t) − e−2βς
∫ t

t−δ
ϕT (v)C5ϕ(v)dv, (3.8)

V̇7(t) + 2βV7(t) =

N∑
i=1

1
υi

Ḋi(t) + 2βV7(t),

=

N∑
i=1

1
υi

[
− ρiDi(t) − ωT (t)ω(t) + µiΨ

T
i (t)Ψi(t)

]
+ 2β

N∑
i=1

1
υi

Di(t),
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=

N∑
i=1

−ρi

υi
Di(t) − ωT (t)i2ω(t) + ϕT (t)U T

P Ξ1UPϕ(t) +

∫ t

0
ϕT (v)dvU T

I Ξ1UI

∫ t

0
ϕ(v)dv

+ ϕ̇T (t)U T
D Ξ1UDϕ̇(t) + 2ϕT (t)U T

P Ξ1UI

∫ t

0
ϕ(v)dv + 2ϕT (t)U T

P Ξ1UDϕ̇(t)

+ 2
∫ t

0
ϕT (v)dvU T

I Ξ1UDϕ̇(t) + 2β
N∑

i=1

1
υi

Di(t),

= −

N∑
i=1

ρi

υi
Di(t) − ωT (t)Ξ2ω(t) + YT

1 (t)U T
P Ξ1UPY1(t) + YT

3 (t)U T
I Ξ1UIY3(t)

+ YT
4 (t)U T

D Ξ1UDY4(t) + 2YT
1 (t)U T

P Ξ1UIY3(t) + 2YT
1 (t)U T

P Ξ1UDY4(t)

+ 2YT
3 (t)U T

I Ξ1UDY4(t) + 2β
N∑

i=1

1
υi

Di(t), (3.9)

where Ξ1 = diag{µ1
υ1
, µ2
υ2
, ..., µM

υM
} and Ξ2 = diag{ 1

υ1
, 1
υ2
, ..., 1

υM
}.

From (3.8), using Jensen’s inequality, we can get the following inequality:

−

∫ t

t−δ
ϕT (v)C5ϕ(v)dv ≤ −

1
δ

( ∫ t

t−δ
ϕ(v)dv

)
C5

( ∫ t

t−δ
ϕ(v)dv

)
. (3.10)

From (2.5) and Li(t) < 0, we can get

N∑
i=1

1
υi

Di(t) +

N∑
i=1

µiΨ
T
i (t)Ψi(t) −

N∑
i=1

ωT
i (t)ωi(t) ≥ 0. (3.11)

Any scalar ε1 that there exists can be obtained using the inequality above.

0 ≤ ε1

N∑
i=1

1
υi

Di(t) − ε1ω
T (t)ω(t) + ε1YT

1 (t)U T
P Ξ3UPY1(t) + ε1YT

3 (t)U T
I Ξ3UIY3(t)

+ ε1YT
4 (t)U T

D Ξ3UDY4(t) + 2ε1YT
1 (t)U T

P Ξ3UIY3(t) + 2ε1YT
1 (t)U T

P Ξ3UDY4(t)
+ 2ε1YT

3 (t)U T
I Ξ3UDY4(t), (3.12)

where Ξ3 = diag{µ1I, µ2I, ..., µN I}.
We can obtain the following from Lemma 2.2 and any scalar ε2:

−2ε2YT
1 (t)Υ̂2(G (ϕ(t))) − ε2YT

1 (t)Υ̂1Y1(t) − ε2(G T (ϕ(t)))(G (ϕ(t))) ≤ 0. (3.13)

It is evident that 0 = ϕ̇(t) − Y4(t), and the following equality exists for any free-weighting matrices
Nr, (r = 1, 2, ..., 8):

0 = 2
[
YT

1 (t)N1 + YT
2 (t)N2 + YT

3 (t)N3 + YT
4 (t)N4 + YT

5 (t)N5 + YT
6 (t)N6 + YT

7 (t)N7

+ YT
8 (t)N8

]
×

[
A ϕ(t) + (G (ϕ(t))) + (E ⊗ Θ1)ϕ(t) + (H ⊗ Θ2)ϕ(t − α(t))
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+ (J ⊗ Θ3)
∫ t

t−δ
ϕ(v)dv − Ψ(t) + ω(t) − Y4(t)

]
. (3.14)

Now, combining the equations from (3.2)–(3.14), we have the following inequality:

V̇(t) + 2βV(t) ≤ ΣT (t)JΣ(t), (3.15)

where

Σ(t) =

[
YT

1 (t) YT
2 (t) YT

3 (t) YT
4 (t) YT

5 (t) YT
6 (t) YT

7 (t) YT
8 (t) ωT (t) (G T (ϕ(t))) D̄T (t)

]
and D̄(t) =

[
D

1
2

1 (t) D
1
2

2 (t) ... D
1
2

N (t)
]T

.

Now, we can easily obtain that

V̇(t) + 2βV(t) ≤ 0.

Following a similar line as in [58], we have

V(0) ≤ Λ||ϕ(0)||2, (3.16)

where

Λ = λmax(B1) + λmax(Wa) + λmax(Wb) + ςλmax(C1) + ςλmax(C2) + ςλmax(C3)
+ ςλmax(C4) + λmax(B2) + δ2λmax(C5).

It becomes known that

V(t) ≤ V(0)e−2βt ≤

(
Λ||ϕ(0)||2 +

N∑
i=1

1
υi

Di(0)
)
e−2βt. (3.17)

On the other hand,

V(t) ≥ e2βtϕT (t)B1ϕ(t) ≥ e2βtλminB1||ϕ(t)||2. (3.18)

Thus, one has

||ϕ(t)|| ≤

√
Λ||ϕ(0)||2 +

∑N
i=1

1
υi
Di(0)

λmin(B1)
e−βt. (3.19)

As a result, it completes the proof of Theorem 3.1. Therefore, from Definition 2.4 we see that the
CDNs (2.1) and (2.2) are exponentially synchronized and demonstrate that the CDN error (2.11) is
exponentially stable.

Remark 3.2. Excluding Zeno Behavior: We need to analyze whether the system has a minimum
event-triggered time interval strictly greater than zero, which means that there is no Zeno behavior.
Assume that there exists Zeno behavior for at the ith node, which implies that there exists 0 < T < ∞

such that limk→∞ ti
k = T, where T is a positive constant.
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From (3.17) we know that there exists a positive constant M0 > 0 such that |ϕi(t)| ≤ M0 for all t ≥ 0
and i = 1, 2, ..., n. Then, we have |ui(t)| ≤ 2M0Ψi.

Let ξ0 =

√
Di(0)

4Ψi M0
√
υi

e−
1
2 (ρi+

1
υi

)T
> 0. Then, from the property of limits, there exists a positive integer

N(ξ0) such that ti
k ∈ [T − ξ0,T ], ∀k ≥ N(ξ0).

By the triggering instant ti
k and event-triggered condition with Li(t) > 0, we can get the following:

|ϕi(t)| ≤
√

Di(0)
√
υiΨi

e−
1
2 (ρi+

1
υi

)t
> 0.

Given |ui(t)| ≤ 2M0Ψi and |ϕi(ti
k)| = 0 for any triggering time ti

k, we conclude that the sufficient
condition to the above inequality is

(t − ti
k)2M0Ψi ≤

√
Di(0)
√
υiΨi

e−
1
2 (ρi+

1
υi

)t
.

This leads to

ti
N(ξ0)+1 − ti

N(ξ0) ≥

√
Di(0)

2ΨiM0
√
υi

e−
1
2 (ρi+

1
υi

)tiN(ξ0)+1 ,

≥

√
Di(0)

2ΨiM0
√
υi

e−
1
2 (ρi+

1
υi

)T
= 2ξ0.

This contradicts the condition ti
k ∈ [T − ξ0,T ], ∀k ≥ N(ξ0). Therefore, Zero behavior is excluded.

In the next subsection we will investigate the uncertain CDNs with hybrid delays, and finding the
results of the CDNs with given PID control parameters leading to exponential synchronization. Linear
matrix inequalities are employed to accommodate uncertainties.

3.1. Complex dynamical networks with coupling parameter uncertainties using PID controller

Consider the error CDNs (2.10) involving coupling uncertainties. In this context, replace the
matrices A ,Θ1,Θ2 and Θ3 with A + ∆A, Θ̂1 + ∆Θ̂1, Θ̂2 + ∆Θ̂2, Θ̂3 + ∆Θ̂3, respectively. These
variables correspond to an N number of nodes and each node as an n-dimensional subsystem in the
following form

ẋi(t) = (A + ∆A(t))xi(t) + G (ϕi(t)) +

N∑
j=1

Ei j(Θ̂1 + ∆Θ̂1(t))x j(t) +

N∑
j=1

Hi j(Θ̂2 + ∆Θ̂2(t))x j(t − α(t))

+

N∑
j=1

Ji j(Θ̂3 + ∆Θ̂3)
∫ t

t−δ
x j(s)ds −UiPϕi(t) −UiI

∫ t

0
ϕi(s)ds −UiDϕ̇i(t) + ωi(t), (3.20)

where ∆A(t), ∆Θ̂1(t), ∆Θ̂2(t) and ∆Θ̂3(t) are the uncertain time varying matrices with norm bounded
and satisfy the following:[

∆A(t) ∆Θ̂1(t) ∆Θ̂2(t) ∆Θ̂3(t)
]

= ΥM(t)
[
Π1 Π2 Π3 Π4

]
, (3.21)

where, Υ and Πa(a = 1, 2, 3, 4) are the known constant matrices, and M(t) is the unknown time-varying
matrices with suitable dimension and satisfying the MT (t)M(t) ≤ I. Now, the compact form of error
system can be given by

ϕ̇(t) = (A + ∆A(t))ϕ(t) + G (ϕi(t)) + (E ⊗ (Θ̂1 + ∆Θ̂1(t)))ϕ(t) − (H ⊗ (Θ̂2 + ∆Θ̂2(t)))ϕ(t − α(t))
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+(J ⊗ (Θ̂3 + ∆Θ̂3(t)))
∫ t

t−δ
ϕ(s)ds −UPϕ(t) −UI

∫ t

0
ϕ(s)ds −UDϕ̇(t) + ω(t). (3.22)

Theorem 3.3. For given parameters ς ≤ 1, ρ, µ, υ and β with known control parameters UP, UI and
UD and the Assumption H1 being true, the CDNs (3.20) are said to be exponentially stable if there exist

positive definite matrices C1, C2, C3, C4, C5, B1, B2 and Wa =

[
W1 W2

z W3

]
> 0, Wb =

[
W4 W5

z W6

]
> 0

and appropriate dimension matrices Nr (r = 1, 2, ..., 8) and positive scalars λ1, λ2, ε1 and ε2, such that
the following LMIs hold:

Ĵ =
[
Ĵ

]
13×13

< 0, (3.23)

where,

Ĵ11 = (B1+BT
1 )+C1+C2+B2+ςC5+2βB1+2βW1+2βW4+U T

P Ξ1UP+2
[
N1A+N1(E ⊗Θ̂1)−N1UP

]
+

ε1U T
P Ξ3UP−ε2Υ̂1+λ1Π1Π

T
1 +λ2Π2Π

T
2 ; Ĵ12 = 2βW T

2 +N T
1 (H ⊗Θ̂2)T +N2

[
A+(E⊗Θ̂1)−2UP

]
+λ1Π1Π

T
3 ;

Ĵ13 = −U T
P UIΞ1−N1UI +N3

[
A+ (E ⊗ Θ̂1)−UP

]
+ε12U T

P UIΞ3; Ĵ14 = B1 +W T
1 +W T

4 +U T
P Ξ1UD−[

N1UD + N1

]
+ N4

[
A + (E ⊗ Θ̂1) −UP

]
+ 2ε1U T

P Ξ3UD; Ĵ15 = (1 − ς)W3 + N5

[
A + (E ⊗ Θ̂1) −UP

]
;

Ĵ16 = N1(J ⊗ Θ̂3) + N6

[
A + (E ⊗ Θ̂1) − UP

]
+ λ1Π1Π

T
4 ; Ĵ17 = N7

[
A + (E ⊗ Θ̂1) − UP

]
+ 2βW5;

Ĵ18 = W T
5 + N8

[
A + (E ⊗ Θ̂1) − UP

]
; Ĵ19 = N T

1 ; Ĵ110 = N T
1 − ε2Υ̂2; Ĵ112 = N1Υ; Ĵ113 = N1Υ;

Ĵ22 = −e−2βς(1 − ς)C2 + 2βW3 + N2(H ⊗ Θ̂2) + λ1Π3Π
T
3 ; Ĵ23 = N2UI + N3(H ⊗ Θ̂2); Ĵ24 =

W2−

[
N2 +N2UD

]
+N4(H ⊗Θ̂2); Ĵ25 = (1−ς)W3 +N5(H ⊗Θ̂2); Ĵ26 = N2(J ⊗Θ̂3)+N6

[
H ⊗Θ̂2

]
;

Ĵ27 = N7(H ⊗ Θ̂2); Ĵ28 = N8(H ⊗ Θ̂2); Ĵ29 = N T
2 ; Ĵ210 = N T

2 ; Ĵ212 = N2Υ; Ĵ213 = N2Υ; Ĵ33 =

U T
I Ξ1UI−2N3UI+ε1U T

I Ξ3UI; Ĵ34 = U T
I Ξ1UD−

[
N3UD+N3

]
+ε1+U T

I Ξ3UD−N4UI; Ĵ35 = −N5UI;

Ĵ36 = N3

[
J ⊗ Θ̂3

]
−N6UI; Ĵ37 = −N7UI; Ĵ38 = −N8UI; Ĵ39 = N T

3 ; Ĵ310 = N T
3 ; Ĵ312 = N3Υ;

Ĵ313 = N3Υ; Ĵ44 = U T
D Ξ1UD + C3 + C4 − 2

[
N4UD + N4

]
+ ε1U T

D Ξ2UD; Ĵ45 = −

[
N5UD + N5

]
;

Ĵ46 = N4(J ⊗ Θ̂3) −
[
N6UD + N6

]
; Ĵ47 = W T

5 −

[
N7UD + N7

]
; Ĵ48 =

[
N8UD + N8

]
; Ĵ49 = N T

4 ;

Ĵ410 = N T
4 ; Ĵ412 = N4Υ; Ĵ413 = N4Υ; Ĵ55 = −(1 − ς)e−2βςC4; Ĵ56 = N5(J ⊗ Θ̂3); Ĵ59 = N T

5 ;
Ĵ510 = N T

5 ; Ĵ512 = N5Υ; Ĵ513 = N5Υ; Ĵ66 = − e2βς

δ
C5 + N6(J ⊗ Θ̂3) + λ1Π4Π

T
4 ; Ĵ67 = N7(J ⊗ Θ̂3);

Ĵ68 = N8(J ⊗Θ̂3); Ĵ69 = N T
6 ; Ĵ610 = N T

6 ; Ĵ612 = N6Υ; Ĵ613 = N6Υ; Ĵ77 = −e−2βςC1 +2βW6; Ĵ78 =

W T
5 ; Ĵ79 = N T

7 ; Ĵ710 = N T
7 ; Ĵ712 = N7Υ; Ĵ713 = N7Υ; J88 = −e−2βςC3; J89 = N T

8 ; Ĵ810 = N T
8 ;

Ĵ812 = N8Υ; Ĵ813 = N8Υ; Ĵ99 = −Ξ1 − ε1I; Ĵ1010 = −ε2I, Ĵ1111 = diag{−ρ1+2β+µ1
υ1

, −ρ2+2β+µ1
υ2

, −ρN+2β+µ1
υN

};

Ĵ1212 = −λ1I; Ĵ1313 = −λ2I.
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Proof. Based on the condition in (3.21), we are able to express that the subsequent A + ∆A, Θ̂1 + ∆Θ̂1,
Θ̂2 +∆Θ̂2, and Θ̂3 +∆Θ̂3 are replaced with A+ΥM(t)Π1, Θ1 +ΥM(t)Π2, Θ2 +ΥM(t)Π3, Θ3 +ΥM(t)Π4,
respectively. Then the LMI (3.1) for the uncertain condition is equivalent to the following condition:

J + F1 + F2, (3.24)

F1 =



Π1

Π3

0
0
0

Π4

0
0
0
0
0



M(t)



ΥN T
7

ΥN T
2

ΥN T
3

ΥN T
4

ΥN T
5

ΥN T
6

ΥN T
7

ΥN T
8

0
0
0



T

+



ΥN T
1

ΥN T
2

ΥN T
3

ΥN T
4

ΥN T
5

ΥN T
6

ΥN T
7

ΥN T
8

0
0
0



MT (t)



Π1

Π3

0
0
0

Π4

0
0
0
0
0



T

, (3.25)

F2 =



Π2

0
0
0
0
0
0
0
0
0
0



M(t)



ΥN T
1

ΥN T
2

ΥN T
3

ΥN T
4

ΥN T
5

ΥN T
6

ΥN T
7

ΥN T
8

0
0
0



T

+



ΥN T
1

ΥN T
2

ΥN T
3

ΥN T
4

ΥN T
5

ΥN T
6

ΥN T
7

ΥN T
8

0
0
0



MT (t)



Π2

0
0
0
0
0
0
0
0
0
0



T

. (3.26)

By Lemma (2.3), necessary and sufficient conditions,

F1 ≤ λ1



Π1

Π3

0
0
0

Π4

0
0
0
0
0





Π1

Π3

0
0
0

Π4

0
0
0
0
0



T

+ λ−1
1



ΥN T
7

ΥN T
2

ΥN T
3

ΥN T
4

ΥN T
5

ΥN T
6

ΥN T
7

ΥN T
8

0
0
0





ΥN T
1

ΥN T
2

ΥN T
3

ΥN T
4

ΥN T
5

ΥN T
6

ΥN T
7

ΥN T
8

0
0
0



T

,
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F2 ≤ λ2



Π2

0
0
0
0
0
0
0
0
0
0





Π2

0
0
0
0
0
0
0
0
0
0



T

+ λ−1
2



ΥN T
1

ΥN T
2

ΥN T
3

ΥN T
4

ΥN T
5

ΥN T
6

ΥN T
7

ΥN T
8

0
0
0





ΥN T
1

ΥN T
2

ΥN T
3

ΥN T
4

ΥN T
5

ΥN T
6

ΥN T
7

ΥN T
8

0
0
0



T

,

Applying Schur complements, we can obtain from (3.23) that Ĵ1 < 0. This complete the proof.

Remark 3.4. This work addresses the exponential synchronization of CDNs with hybrid delays using
PID controller, in contrast to some research results on exponential synchronization of CDNs with time-
varying delays [24, 54, 57]. In contrast to the approach used in [24, 54, 57], which investigated time
scale, sample-data control, and impulsive effects, respectively, we studied PID controller with event-
triggered mechanism using LMIs to directly incorporate the system’s numerous coupling components
in the hypothetical matrix in this paper. In addition, the method in [54] is distinct from applying
appropriate Free-weight matrices to solve the problem with (3.1). As a result, the approach presented
in this work is more effective while maintaining the system’s complexity.

Remark 3.5. Compared with [54], which did not take into account the influence of any controls while
studying the synchronization of multi-weighted complex dynamical networks, our proposed results can
guarantee exponential synchronization for CDNs with hybrid delays and event-triggered mechanisms.
Particularly distinct from the standard results of PI/PD controllers in [52] and [53], in this research,
we investigate PID controller as well as parameter uncertainties with PID controller, which is distinct
from previous studies. In Table 1, a comparison table with previously published results is shown below.

Table 1. Comparison with other works.

[10] [6, 24, 54] [52] [53] Our Paper
CDNs

√ √ √ √ √

Exponential Synchronization ×
√

× ×
√

PI/PD Controller × ×
√ √ √

PID Controller × × ×
√ √

Uncertain terms × × × ×
√

4. Numerical examples

This section aims to illustrate the effectiveness of the main results developed in this paper using two
numerical examples adopted from the literature.
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Example 4.1. Consider the general complex dynamical networks consisting of 5 nodes and each node
as a 2-dimensional subsystem in the following form:

ẋi(t) = A xi(t) + G (ϕi(t)) +

5∑
j=1

Ei jΘ1x j(t) +

5∑
j=1

Hi jΘ2x j(t − α(t)) +

5∑
j=1

Ji jΘ3

∫ t

t−δ
x j(s)ds

−UiPϕi(t) −UiI

∫ t

0
ϕi(s)ds −UiDϕ̇i(t) + ωi(t). (4.1)

The state and inner-coupling matrices are constructed as follows:

A =

(
3.8 3.20

1.45 1.78

)
, E = H = J


−3 0.5 −0.1 0 0
0.5 −0.4 −1 0 0
1 1.4 −3 0 0.2
0 0 0 −1 0.6
0 0 0 0.4 −2


,

Θ1 =

(
0.25 0

0 0.25

)
, Θ2 =

(
0.15 0

0 0.15

)
, Θ3 =

(
0.35 0

0 0.35

)
.

Also, the nonlinear dynamical function can be chosen as

G (ϕi(t)) =

[
tanh(0.3∗ϕi1(t))

tanh(0.41∗ϕi2(t))

]
,

which satisfies the condition that Υ1 and Υ2 can be given by

Υ1 =

(
−0.6 −0.3
0.1 0.1

)
, Υ2 =

(
−0.33 −41

0.3 0.25

)
,

since parameter and threshold values can be chosen as ς = 0.5, β = 0.02, ρ1 = ρ2 = ρ3 = ρ4 = ρ5 = 5
and υ1 = υ2 = υ3 = υ4 = υ5 = 4. Also, µ1 = 0.15, µ2 = 0.18, µ3 = 0.16, µ4 = 0.2, µ5 = 0.12 and the
upper bound α = 2.5. Due to the absence of control strategy in place, the state trajectories of the nodes
in delayed CDNs cannot be synchronized with the trajectory of the isolated node. This is primarily
because of the coupling effects and time-varying delays that are present. Therefore, we suggest using
the PID controller in conjunction with the dynamic event-triggered strategy to synchronize all of the
states to the target node. This will allow the complex network that is being considered to reach a state
of synchronization. Eventually, to reach an exponential synchronization for delayed CDNs, our plan is
to use a proportional control algorithm. According to the first theorem, if we assume that UI and UD

will always remain equal to zero, the delayed complex dynamical network will be able to accomplish
exponential synchronization when UP = 25. The synchronization error trajectories ϕ j1 and ϕ j2 under
the proportional controller are depicted in Figures 1 and 2. An illustration of the control input for the
delayed CDN can be seen in Figure 3.
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Figure 1. Evolution of synchronization error ϕ j1(t) (Under Proportional controller), ( j = 1,
2, 3, 4, 5).
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Figure 2. Evolution of synchronization error ϕ j2(t) (Under Proportional controller), ( j = 1,
2, 3, 4, 5).
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Figure 3. Control input.

Next, if we assume that UD will always remain equal to zero, the delayed CDNs will be able to
accomplish exponential synchronization when UP = 10 and UI = 55. The synchronization error
trajectories ϕ j1 and ϕ j2 under the proportional controller are depicted in Figures 4 and 5. An
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illustration of the control input for the delayed CDNs is shown in Figure 6.
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Figure 4. Evolution of synchronization error ϕ j1(t) (Under Proportional Integral controller),
( j = 1, 2, 3, 4, 5).
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Figure 5. Evolution of synchronization error ϕ j2(t) (Under Proportional Integral controller),
j = 1, 2, 3, 4, 5.
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Figure 6. Control input.

Next, if we assume that UI will always remain equal to zero, the delayed complex dynamical
network will be able to accomplish exponential synchronization when UP = 40 and UD = 0.55. The
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synchronization error trajectories ϕ j1 and ϕ j2 under the proportional controller are depicted in
Figures 7 and 8. An illustration of the control input for the delayed CDN can be seen in Figure 9.
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Figure 7. Evolution of synchronization error ϕ j1(t) (Under Proportional Derivative
controller), ( j = 1, 2, 3, 4, 5).
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Figure 8. Evolution of synchronization error ϕ j2(t) (Under Proportional Derivative
controller), ( j = 1, 2, 3, 4, 5).
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Figure 9. Control input.

Next, the delayed complex dynamical network will be able to accomplish exponential
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synchronization using PID controller when UP = 40, UI = 55 and UD = 0.65. The synchronization
error trajectories ϕ j1 and ϕ j2 under the proportional controller are depicted in Figures 10 and 11. An
illustration of the control input for the delayed CDNs can be seen in Figure 12.
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Figure 10. Evolution of synchronization error ϕ j1(t) (Under Proportional Integral Derivative
controller), ( j = 1, 2, 3, 4, 5).
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Figure 11. Evolution of synchronization error ϕ j2(t) (Under Proportional Integral Derivative
controller), ( j = 1, 2, 3, 4, 5).
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Figure 12. Control input.

By using the MATLAB LMI tool box, we have obtained the scalar values ε1 = 8.6389, ε2 = 1.0853,
and positive definite matrices are given by
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W1 =

(
2.1399 −0.2508
−0.2508 1.6640

)
, W2 =

(
1.5791 −0.3814
−0.3814 1.0592

)
, W3 =

(
4.9061 −1.4585
−1.4585 4.0388

)
,

W4 =

(
2.9941 0.2839
0.2839 2.0446

)
, W5 =

(
1.7289 0.1172
0.1172 0.0866

)
, W6 =

(
26.8389 0.0048
0.0048 −0.0128

)
,

N1 =

(
1.1918 −0.0527
−0.0527 0.0065

)
, N2 =

(
2.5062 −0.1357
−0.1357 0.0490

)
, N3 =

(
7.6356 −0.2856
−0.2856 0.0350

)
,

N4 =

(
9.8037 −0.3312
−0.3312 0.0490

)
, N5 =

(
4.4903 0.0339
0.0339 0.0296

)
, N6 =

(
1.2464 0.0088
0.0088 −0.0001

)
,

N7 =

(
3.6973 0.0116
0.0116 0.0551

)
, N8 =

(
4.5033 0.0128
0.0128 0.0746

)
, C1 =

(
2.1399 −0.2508
−0.2508 1.6640

)
,

C2 =

(
2.0314 − 0.1100
−0.1100 1.4816

)
, C3 =

(
2.9759 0.2172
0.2172 3.2190

)
, C4 =

(
1.0735 0.1313
0.1313 1.2715

)
,

C5 =

(
1.0984 0.1347
0.1347 1.3858

)
, B1 =

(
0.7948 0.2775
0.2775 1.1939

)
, B2 =

(
1.7240 0.1790
0.1790 1.9329

)
.

Example 4.2. Consider the general uncertain CDNs consisting of 3 nodes and each node as a 2-
dimensional subsystem in the following form:

ẋi(t) = (A + ∆A(t))xi(t) + G (ϕi(t)) +

3∑
j=1

Ei j(Θ̂1 + ∆Θ̂1(t))x j(t) +

3∑
j=1

Hi j(Θ̂2 + ∆Θ̂2(t))x j(t − α(t))

+

3∑
j=1

Ji j(Θ̂3 + ∆Θ̂3)
∫ t

t−δ
x j(s)ds −UiPϕi(t) −UiI

∫ t

0
ϕi(s)ds −UiDϕ̇i(t) + ωi(t). (4.2)

The state and coupling uncertain matrices are constructed as follows:

A =

(
3.8 3.20

1.45 1.78

)
, E =


3 −1 −2
−1 2 −1
−2 −1 3

 , H =


4 −2 −2
−2 −1 3
−2 3 −1

 ,
J =


−1 2 1
0 −2 2
1 2 −3

 , Θ̂1 =

(
0.25 0

0 0.25

)
, Θ̂2 =

(
0.15 0

0 0.15

)
, Θ̂3 =

(
0.35 0

0 0.35

)
,

Π1 =

(
2.54 3.52
5.15 0.61

)
, Π2 =

(
1.54 0.32
5.15 1.61

)
, Π3 =

(
1.54 0.32
0.15 0.13

)
, Π4 =

(
1.34 0.22
0.25 0.41

)
.

AIMS Mathematics Volume 8, Issue 12, 28976–29007.



28997

Also, the nonlinear dynamical function can be chosen as

G (ϕi(t)) =

[
tanh(0.2∗ϕi1(t))

tanh(0.34∗ϕi2(t))

]
,

which satisfies the condition that Υ1 and Υ2 can be given by

Υ1 =

(
−0.54 −0.74
0.12 0

)
, Υ2 =

(
−0.43 −45
0.32 0.2

)
.

The selected known parameters are ς = 0.5 and β = 0.01, with the maximum allowable upper bound
set at α = 2.2. To achieve exponential synchronization for delayed complex dynamical networks under
parameter uncertainties, our strategy involves employing a proportional control algorithm. According
to the Theorem 3.3, assuming both UI and UD are consistently zero, the delayed complex dynamical
network can achieve exponential synchronization with UP = 31.

The synchronization error trajectories, ϕi1 and ϕ j2, under the proportional controller are illustrated
in Figures 13 and 14. An illustration of the control input for the delayed CDNs can be found in
Figure 15.
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Figure 13. Evolution of synchronization error ϕ j1(t) (Under Proportional controller), j = 1,
2, 3.
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Figure 14. Evolution of synchronization error ϕ j2(t) (Under Proportional controller), j = 1,
2, 3.
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Figure 15. Control input.

Moving forward, applying Theorem 3.3, assuming UD remains constantly zero, the delayed CDNs
can achieve exponential synchronization with UP = 20 and UI = 60. The synchronization error
trajectories, ϕi1 and ϕ j2, under the proportional controller are depicted in Figures 16 and 17. A
visualization of the control input for the delayed CDNs is presented in Figure 18.
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Figure 16. Evolution of synchronization error ϕ ji1(t) (Under Proportional Integral
controller), j = 1, 2, 3.
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Figure 17. Evolution of synchronization error ϕ j2(t) (Under Proportional Integral controller),
j = 1, 2, 3.
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Figure 18. Control input.

Continuing, if we assume UI remains constantly zero, the delayed complex dynamical network can
achieve exponential synchronization with UP = 50 and UD = 0.55. The synchronization error
trajectories, ϕi1 and ϕ j2, under the proportional controller are shown in Figures 19 and 20. An
illustration of the control input for the delayed CDNs can be seen in Figure 21.
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Figure 19. Evolution of synchronization error ϕ j1(t) (Under Proportional Derivative
controller), j = 1, 2, 3.
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Figure 20. Evolution of synchronization error ϕ j2(t) (Under Proportional Derivative
controller), j = 1, 2, 3.
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Figure 21. Control input.

Further applying Theorem 3.3, the CDNs can achieve exponential synchronization using a PID
controller with UP = 53, UI = 75, and UD = 0.65. The synchronization error trajectories, ϕ j1 and ϕ j2,
under the proportional controller are visualized in Figures 22 and 23. An illustration of the control
input for the delayed CDNs is available in Figure 24.
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Figure 22. Evolution of synchronization error ϕ j1(t) (Under PID controller), j = 1, 2, 3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time

-5

-4

-3

-2

-1

0

1

2

3

4

5

E
rr

o
r 

S
ta

te
 T

ra
je

ct
o

ri
e

s

Figure 23. Evolution of synchronization error ϕ j2(t) (Under PID controller), j = 1, 2, 3.
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Figure 24. Control input.

By utilizing the MATLAB LMI toolbox, we can get the following scalar values ε1 = 4.5477, ε2 =

7.0519 and positive definite matrices:

W1 =

(
2.5546 −0.0058
−0.0058 2.5131

)
, W2 =

(
838.5003 0.6866

0.9866 847.1332

)
, W3 =

(
1.1224 −0.0069
−0.0069 1.0950

)
,

W4 =

(
2.9185 0.0074
0.0074 2.9413

)
, W5 =

(
1.3328 −0.0144
−0.0144 1.3244

)
, W6 =

(
362.7104 3.6002

3.6002 353.4019

)
,

N1 =

(
15.9662 −0.3751
−0.3751 15.5536

)
, N2 =

(
17.8032 −0.4754
−0.4754 17.9828

)
, N3 =

(
4.5940 −0.1211
−0.1211 4.3925

)
,

N4 =

(
10.5927 −0.1858
−0.1858 10.7247

)
, N5 =

(
9.8368 −0.2625
−0.0625 9.6927

)
, N6 =

(
1.6559 −0.0148
−0.0148 1.5761

)
,

N7 =

(
14.2600 −0.3720
−0.3720 14.2429

)
, N8 =

(
18.5753 −0.3917
−0.3917 18.5580

)
, C1 =

(
1.7252 0.1201
0.0120 2.1247

)
,

C2 =

(
1.1020 −0.0023
−0.0023 1.1232

)
, C3 =

(
1.5381 −0.0077
−0.0077 1.5649

)
, C4 =

(
2.1049 −0.0206
−0.0206 1.5649

)
,

C5 =

(
9.2451 −0.0344
−0.0344 9.2441

)
, B1 =

(
2.4181 0.4222
0.4222 2.9580

)
,B2 =

(
1.3451 0.3942
0.3942 1.6548

)
.

Example 4.3. Consider the complex dynamical networks (4.1) consisting of 8 nodes and each node as
a 3-dimensional subsystem, and the known parameters are given as follows:

A =


−1 0 0
0 −1 0
0 0 −1

 , E = H = J



−2 0 1 1 0 0 0 0
0 −3 1 1 0 1 0 0
1 2 −3 0 0 0 0 1
1 1 0 −4 1 0 0 1
0 0 0 1 −2 0 1 0
0 1 0 0 0 −2 0 1
0 0 0 0 1 0 −2 1
0 0 1 1 0 1 1 −4


,
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Θ1 =


0.08 0 0

0 0.08 0
0 0 0.08

 , Θ2 =


0.1 0 0
0 0.1 0
0 0 0.1

 , Θ3 =


0.5 0 0
0 0.5 0
0 0 0.5

 .
The nonlinear function is considered as follows:

G (ϕi(t)) =


tanh(0.1∗ϕi1(t))

tanh(0.15∗ϕi2(t))
tanh(0.2∗ϕi2(t))

 .
The parameters and threshold values can be set as follows: ς = 0.2, β = 0.01, ρ1 = ρ2 = ρ3 = ρ4 =

ρ5 = ρ6 = ρ7 = ρ8 = 2, and υ1 = υ2 = υ3 = υ4 = υ5 = υ6 = υ7 = υ8 = 2. Additionally, µ1 = 0.03,
µ2 = 0.06, µ3 = 0.02, µ4 = 0.02, µ5 = 0.1, and the upper bound α = 1.5. Using the same control
parameters from Example 3.1, it can be verified through the Matlab toolbox that inequality (3.1) in
Theorem 3.1 is satisfied. The results are shown in Figure 25.

Figure 25. Synchronization of ϕ j1(t), ϕ j2(t), ϕ j3(t) (Under PID controller), (1 ≤ j ≤ 8).

5. Conclusions

In this manuscript, we have presented a novel approach to achieving exponential synchronization
in CDNs with hybrid delays by combining PID control with a dynamic event-trigger mechanism. We
formulate a comprehensive mathematical model for the network and establish synchronization criteria
using LMI techniques. We have also demonstrated the stability of the system under the proposed
control approach using Lyapunov stability theory techniques. Our numerical simulations have shown
that the proposed approach is effective in achieving exponential synchronization in CDNs with hybrid
delays and that the use of PID control parameter values and a dynamic event trigger mechanism can
lead to significant improvements in the efficiency and robustness of the control strategy. Our results
have important implications for the development of more advanced and effective control strategies for
complex systems, particularly in the presence of delays and other sources of uncertainty. We hope that
our research will inspire further investigations into the use of PID control and dynamic event trigger
mechanisms in CDNs and contribute to the development of more efficient and robust control strategies
for complex systems in the future.
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3. W. Yu, G. Chen, J. Lü, On pinning synchronization of complex dynamical networks, Automatica,
45 (2009), 429–435. https://doi.org/10.1016/j.automatica.2008.07.016

4. H. Liu, J. A. Lu, J. Lü, D. J. Hill, Structure identification of uncertain general
complex dynamical networks with time delay, Automatica, 45 (2009), 1799–1807.
https://doi.org/10.1016/j.automatica.2009.03.022

5. H. Ren, F. Deng, Y. Peng, Finite time synchronization of markovian jumping stochastic complex
dynamical systems with mix delays via hybrid control strategy, Neurocomputing, 272 (2018), 683–
693. https://doi.org/10.1016/j.neucom.2017.08.013

6. Z. H. Guan, Z. W. Liu, G. Feng, Y. W. Wang, Synchronization of complex dynamical networks with
time-varying delays via impulsive distributed control, IEEE T. Circuits-I, 57 (2010), 2182–2195.
https://doi.org/10.1109/TCSI.2009.2037848

7. L. Xiao, B. Liao, S. Li, Z. Zhang, L. Ding, L. Jin, Design and analysis of ftznn applied to the
real-time solution of a nonstationary lyapunov equation and tracking control of a wheeled mobile
manipulator, IEEE T. Ind. Inform., 14 (2018), 98–105. https://doi.org/10.1109/TII.2017.2717020

8. L. Xiao, J. Dai, L. Jin, W. Li, S. Li, J. Hou, A noise-enduring and finite-time zeroing neural network
for equality-constrained time-varying nonlinear optimization, IEEE T. Syst. Man Cy.-S., 51 (2021),
4729–4740. https://doi.org/10.1109/TSMC.2019.2944152

9. J. Zhou, D. Xu, W. Tai, C. K. Ahn, Switched event-triggered H∞ security control for networked
systems vulnerable to aperiodic dos attacks, IEEE T. Netw. Sci. Eng., 10 (2023), 2109–2123.
https://doi.org/10.1109/TNSE.2023.3243095

AIMS Mathematics Volume 8, Issue 12, 28976–29007.

http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2021.11.036
http://dx.doi.org/https://doi.org/10.1007/S11071-015-2416-3
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2008.07.016
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2009.03.022
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2017.08.013
http://dx.doi.org/https://doi.org/10.1109/TCSI.2009.2037848
http://dx.doi.org/https://doi.org/10.1109/TII.2017.2717020
http://dx.doi.org/https://doi.org/10.1109/TSMC.2019.2944152
http://dx.doi.org/https://doi.org/10.1109/TNSE.2023.3243095


29004

10. J. L. Wang, P. C. Wei, H. N. Wu, T. Huang, M. Xu, Pinning synchronization of complex
dynamical networks with multiweights, IEEE T. Syst. Man Cy.-S., 49 (2019), 1357–1370.
https://doi.org/10.1109/TSMC.2017.2754466

11. Q. Li, B. Shen, Z. Wang, T. Huang, J. Luo, Synchronization control for a class of discrete time-
delay complex dynamical networks: A dynamic event-triggered approach, IEEE T. Cybernetics,
49 (2019), 1979–1986. https://doi.org/10.1109/TCYB.2018.2818941

12. X. Yang, J. Lam, D. W. C. Ho, Z. Feng, Fixed-time synchronization of complex networks with
impulsive effects via nonchattering control, IEEE T. Automat. Contr., 62 (2017), 5511–5521.
https://doi.org/10.1109/TAC.2017.2691303

13. H. Shen, X. Hu, X. Wu, S. He, J. Wang, Generalized dissipative state estimation of singularly
perturbed switched complex dynamic networks with persistent dwell-time mechanism, IEEE T.
Syst. Man Cy.-S., 52 (2020), 1795–1806. https://doi.org/10.1109/TSMC.2020.3034635

14. M. S. Raunak, L. J. Osterweil, Resource management for complex, dynamic environments, IEEE
T. Software Eng., 39 (2012), 384–402. https://doi.org/10.1109/TSE.2012.31

15. L. Wang, H. P. Dai, H. Dong, Y. Y. Cao, Y. X. Sun, Adaptive synchronization of
weighted complex dynamical networks through pinning, Eur. Phys. J. B, 61 (2008), 335–342.
https://doi.org/10.1140/epjb/e2008-00081-5

16. J. Yogambigai, M. S. Ali, H. Alsulami, M. S. Alhodaly, Impulsive and pinning control
synchronization of markovian jumping complex dynamical networks with hybrid coupling
and additive interval time-varying delays, Commun. Nonlinear Sci., 85 (2020), 105215.
https://doi.org/10.1016/j.cnsns.2020.105215

17. M. S. Anwar, S. Kundu, D. Ghosh, Enhancing synchrony in asymmetrically weighted multiplex
networks, Chaos Soliton. Fract., 142 (2021), 110476. https://doi.org/10.1016/j.chaos.2020.110476

18. M. S. Anwar, D. Ghosh, N. Frolov, Relay synchronization in a weighted triplex network,
Mathematics, 9 (2021), 2135. https://doi.org/10.3390/math9172135

19. L. V. Gambuzza, M. Frasca, E. Estrada, Hubs-attracting laplacian and related synchronization on
networks, SIAM J. Appl. Dyn. Syst., 19 (2020), 1057–1079. https://doi.org/10.1137/19M1287663

20. Y. A. Liu, J. Xia, B. Meng, X. Song, H. Shen, Extended dissipative synchronization for semi-
markov jump complex dynamic networks via memory sampled-data control scheme, J. Franklin I.,
357 (2020), 10900–10920. https://doi.org/10.1016/j.jfranklin.2020.08.023

21. Y. Wang, S. Ding, R. Li, Master-slave synchronization of neural networks
via event-triggered dynamic controller, Neurocomputing, 419 (2021), 215–223.
https://doi.org/10.1016/j.neucom.2020.08.062

22. Q. Jia, E. S. Mwanandiye, W. K. Tang, Master-slave synchronization of delayed neural
networks with time-varying control, IEEE T. Neur. Net. Lear., 32 (2021), 2292–2298.
https://doi.org/10.1109/TNNLS.2020.2996224

23. C. Hu, H. He, H. Jiang, Fixed/preassigned-time synchronization of complex networks
via improving fixed-time stability, IEEE T. Cybernetics, 51 (2021), 2882–2892.
https://doi.org/10.1109/TCYB.2020.2977934

AIMS Mathematics Volume 8, Issue 12, 28976–29007.

http://dx.doi.org/https://doi.org/10.1109/TSMC.2017.2754466
http://dx.doi.org/https://doi.org/10.1109/TCYB.2018.2818941
http://dx.doi.org/https://doi.org/10.1109/TAC.2017.2691303
http://dx.doi.org/https://doi.org/10.1109/TSMC.2020.3034635
http://dx.doi.org/https://doi.org/10.1109/TSE.2012.31
http://dx.doi.org/https://doi.org/10.1140/epjb/e2008-00081-5
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2020.105215
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110476
http://dx.doi.org/https://doi.org/10.3390/math9172135
http://dx.doi.org/https://doi.org/10.1137/19M1287663
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2020.08.023
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2020.08.062
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2020.2996224
http://dx.doi.org/https://doi.org/10.1109/TCYB.2020.2977934


29005

24. J. Zhang, J. Sun, Exponential synchronization of complex networks with continuous
dynamics and boolean mechanism, Neurocomputing, 307 (2018), 146–152.
https://doi.org/10.1016/j.neucom.2018.03.061

25. A. Z. Dragicevic, A. Gurtoo, Stochastic control of ecological networks, J. Math. Biol., 85 (2022),
7. https://doi.org/10.1007/s00285-022-01777-5

26. J. L. Wang, H. N. Wu, T. Huang, S. Y. Ren, Analysis and pinning control for output synchronization
and h∞ output synchronization of multi-weighted complex networks, In: Analysis and control of
output synchronization for complex dynamical networks, Singapore: Springer, 2019, 175–205.
https://doi.org/10.1007/978-981-13-1352-3 9

27. D. Wang, W. W. Che, H. Yu, J. Y. Li, Adaptive pinning synchronization of complex networks with
negative weights and its application in traffic road network, Int. J. Control Autom. Syst., 16 (2018),
782–790. https://doi.org/10.1007/s12555-017-0161-8

28. E. Kyriakakis, J. Sparsø, P. Puschner, M. Schoeberl, Synchronizing real-time tasks in time-
triggered networks, In: 2021 IEEE 24th international symposium on real-time distributed
computing (ISORC), 2021, 11–19. https://doi.org/10.1109/ISORC52013.2021.00013

29. T. Hu, Z. He, X. Zhang, S. Zhong, K. Shi, Y. Zhang, Adaptive fuzzy control
for quasi-synchronization of uncertain complex dynamical networks with time-varying
topology via event-triggered communication strategy, Inform. Sci., 582 (2022), 704–724.
https://doi.org/10.1016/j.ins.2021.10.036

30. K. Krüger, G. Fohler, M. Völp, P. Esteves-Verissimo, Improving security for time-triggered
real-time systems with task replication, In: 2018 IEEE 24th international conference on
embedded and real-time computing systems and applications (RTCSA), 2018, 232–233.
https://doi.org/10.1109/RTCSA.2018.00036

31. Q. Wang, B. Fu, C. Lin, P. Li, Exponential synchronization of chaotic lur’e systems
with time-triggered intermittent control, Commun. Nonlinear Sci., 109 (2022), 106298.
https://doi.org/10.1016/j.cnsns.2022.106298

32. S. Ding, Z. Wang, Event-triggered synchronization of discrete-time neural networks: A switching
approach, Neural Networks, 125 (2020), 31–40. https://doi.org/10.1016/j.neunet.2020.01.024

33. Y. Li, F. Song, J. Liu, X. Xie, E. Tian, Decentralized event-triggered synchronization control for
complex networks with nonperiodic dos attacks, Int. J. Robust Nonlin., 32 (2022), 1633–1653.
https://doi.org/10.1002/rnc.5899

34. R. Pan, Y. Tan, D. Du, S. Fei, Adaptive event-triggered synchronization control for
complex networks with quantization and cyber-attacks, Neurocomputing, 382 (2020), 249–258.
https://doi.org/10.1016/j.neucom.2019.11.096

35. W. Xing, P. Shi, R. K. Agarwal, L. Li, Robust H∞ pinning synchronization for complex networks
with event-triggered communication scheme, IEEE T. Circuits Syst.-I, 67 (2020), 5233–5245.
https://doi.org/10.1109/TCSI.2020.3004170

36. B. Li, Z. Wang, L. Ma, An event-triggered pinning control approach to synchronization of discrete-
time stochastic complex dynamical networks, IEEE T. Neur. Net. Lear., 29 (2018), 5812–5822.
https://doi.org/10.1109/TNNLS.2018.2812098

AIMS Mathematics Volume 8, Issue 12, 28976–29007.

http://dx.doi.org/https://doi.org/10.1016/j.neucom.2018.03.061
http://dx.doi.org/https://doi.org/10.1007/s00285-022-01777-5
http://dx.doi.org/https://doi.org/10.1007/978-981-13-1352-3_9
http://dx.doi.org/https://doi.org/10.1007/s12555-017-0161-8
http://dx.doi.org/https://doi.org/10.1109/ISORC52013.2021.00013
http://dx.doi.org/https://doi.org/10.1016/j.ins.2021.10.036
http://dx.doi.org/https://doi.org/10.1109/RTCSA.2018.00036
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2022.106298
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2020.01.024
http://dx.doi.org/https://doi.org/10.1002/rnc.5899
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2019.11.096
http://dx.doi.org/https://doi.org/10.1109/TCSI.2020.3004170
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2018.2812098


29006

37. Y. Luo, Y. Yao, Z. Cheng, X. Xiao, H. Liu, Event-triggered control for coupled reaction–diffusion
complex network systems with finite-time synchronization, Physica A, 562 (2021), 125219.
https://doi.org/10.1016/j.physa.2020.125219

38. X. Lv, J. Cao, X. Li, M. Abdel-Aty, U. A. Al-Juboori, Synchronization analysis for complex
dynamical networks with coupling delay via event-triggered delayed impulsive control, IEEE T.
Cybernetics, 51 (2021), 5269–5278. https://doi.org/10.1109/TCYB.2020.2974315

39. C. X. Shi, G. H. Yang, X. J. Li, Event-triggered output feedback synchronization
control of complex dynamical networks, Neurocomputing, 275 (2018), 29–39.
https://doi.org/10.1016/j.neucom.2017.05.014

40. X. Li, H. Wu, J. Cao, A new prescribed-time stability theorem for impulsive piecewise-smooth
systems and its application to synchronization in networks, Appl. Math. Model., 115 (2023), 385–
397. https://doi.org/10.1016/j.apm.2022.10.051

41. X. Li, H. Wu, J. Cao, Prescribed-time synchronization in networks of piecewise smooth systems
via a nonlinear dynamic event-triggered control strategy, Math. Comput. Simulat., 203 (2023),
647–668. https://doi.org/10.1016/j.matcom.2022.07.010

42. B. Zhou, X. Liao, T. Huang, G. Chen, Pinning exponential synchronization of complex networks
via event-triggered communication with combinational measurements, Neurocomputing, 157
(2015), 199–207. https://doi.org/10.1016/j.neucom.2015.01.018

43. D. Liu, G. H. Yang, Event-triggered synchronization control for complex
networks with actuator saturation, Neurocomputing, 275 (2018), 2209–2216.
https://doi.org/10.1016/j.neucom.2017.10.054

44. J. Liu, H. Wu, J. Cao, Event-triggered synchronization in fixed time for semi-markov switching
dynamical complex networks with multiple weights and discontinuous nonlinearity, Commun.
Nonlinear Sci., 90 (2020), 105400. https://doi.org/10.1016/j.cnsns.2020.105400

45. X. Song, R. Zhang, C. K. Ahn, S. Song, Dissipative synchronization of semi-markov jump
complex dynamical networks via adaptive event-triggered sampling control scheme, IEEE Syst.
J., 16 (2022), 4653–4663. https://doi.org/10.1109/JSYST.2021.3124082

46. Q. Dong, P. Yu, Y. Ma, Event-triggered synchronization control of complex
networks with adaptive coupling strength, J. Franklin I., 359 (2022), 1215–1234.
https://doi.org/10.1016/j.jfranklin.2021.11.007

47. H. Lu, Y. Hu, C. Guo, W. Zhou, Cluster synchronization for a class of complex dynamical network
system with randomly occurring coupling delays via an improved event-triggered pinning control
approach, J. Franklin I., 357 (2020), 2167–2184. https://doi.org/10.1016/j.jfranklin.2019.11.076

48. S. Wang, Y. Cao, T. Huang, Y. Chen, S. Wen, Event-triggered distributed control for
synchronization of multiple memristive neural networks under cyber-physical attacks, Inform. Sci.,
518 (2020), 361–375. https://doi.org/10.1016/j.ins.2020.01.022

49. W. Wu, L. He, J. Zhou, Z. Xuan, S. Arik, Disturbance-term-based switching event-triggered
synchronization control of chaotic lurie systems subject to a joint performance guarantee, Commun.
Nonlinear Sci., 115 (2022), 106774. https://doi.org/10.1016/j.cnsns.2022.106774

AIMS Mathematics Volume 8, Issue 12, 28976–29007.

http://dx.doi.org/https://doi.org/10.1016/j.physa.2020.125219
http://dx.doi.org/https://doi.org/10.1109/TCYB.2020.2974315
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2017.05.014
http://dx.doi.org/https://doi.org/10.1016/j.apm.2022.10.051
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2022.07.010
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2015.01.018
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2017.10.054
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2020.105400
http://dx.doi.org/https://doi.org/10.1109/JSYST.2021.3124082
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2021.11.007
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2019.11.076
http://dx.doi.org/https://doi.org/10.1016/j.ins.2020.01.022
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2022.106774


29007

50. Y. Ni, Z. Wang, Y. Fan, X. Huang, H. Shen, Memory-based event-triggered control for global
synchronization of chaotic lur’e systems and its application, IEEE T. Syst. Man Cy.-S., 53 (2023),
1920–1931. https://doi.org/10.1109/TSMC.2022.3207353

51. H. Zhang, J. Liu, Event-triggered fuzzy flight control of a two-degree-of-
freedom helicopter system, IEEE T. Fuzzy Syst., 29 (2021), 2949–2962.
https://doi.org/10.1109/TFUZZ.2020.3009755
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