N

N

Exponential synchronization analysis for complex
dynamical networks with hybrid delays and
uncertainties under given control parameters

Saravanan Shanmugam, Mohamed Rhaima, Hamza Ghoudi

» To cite this version:

Saravanan Shanmugam, Mohamed Rhaima, Hamza Ghoudi. Exponential synchronization analysis for
complex dynamical networks with hybrid delays and uncertainties under given control parameters.
AIMS Mathematics, 2023, 8, pp.28976 - 29007. 10.3934/math.20231484 . hal-04445404

HAL Id: hal-04445404
https://hal.parisnanterre.fr /hal-04445404
Submitted on 7 Feb 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.parisnanterre.fr/hal-04445404
https://hal.archives-ouvertes.fr

AIMS Mathematics, 8(12): 28976-29007.
DOI: 10.3934/math.20231484
ATMS Mathematics Received: 29 August 2023

Revised: 03 October 2023

Accepted: 11 October 2023
http://www.aimspress.com/journal/Math Published: 25 October 2023

Research article

Exponential synchronization analysis for complex dynamical networks with
hybrid delays and uncertainties under given control parameters

Saravanan Shanmugam', Mohamed Rhaima®* and Hamza Ghoudi®

' Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai 600 069, Tamil Nadu,
India

2 Department of Statistics and Operations Research, College of Sciences, King Saud University, P.O.
Box 2455 Riyadh 11451, Saudi Arabia

3 University of Paris Nanterre, MODAL’ X, BAT G, 200, ave de la République 92000 Nanterre,
France

* Correspondence: Email: mrhaima.c @ksu.edu.sa.

Abstract: This paper addresses the problem of exponential synchronization in continuous-time
complex dynamical networks with both time-delayed and non-delayed interactions. We employ a
proportional integral derivative (PID) control strategy and a dynamic event-triggered approach to
investigate this synchronization problem. Our approach begins with constructing a general model for
complex dynamical networks that incorporate delays. We then derive synchronization criteria based on
the PID control parameters, utilizing linear matrix inequality techniques in conjunction with a dynamic
event-trigger mechanism. The application of Lyapunov stability theory and inequality techniques
allows us to establish these criteria, considering the presence of hybrid delays. To illustrate the
effectiveness of our proposed model, we provide two numerical examples showcasing synchronization
dynamics. These examples demonstrate the successful theoretical results of a novel PID controller and
dynamic event-trigger mechanism.

Keywords: complex dynamical networks; exponential synchronization; Lyapunov-Krasovskii
functional; PID control
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1. Introduction

Complex dynamical networks (CDNs) are large-scale networks comprising numerous nodes
interconnected through specific topological links. CDNs with hybrid delays are crucial for modeling
and optimizing real-world systems that exhibit both continuous and discrete delays. These networks
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find applications in various industries, including communication networks, control systems, biological
systems, power systems, economics and finance, chemical engineering, transportation, environmental
sciences, mechanical systems and healthcare, such as in [1-9]. Hybrid delay models provide a robust
framework for analyzing and improving the behavior of complex systems in these domains by
considering the interplay between continuous dynamics and discrete events, ultimately leading to
enhanced performance and efficiency. The understanding and management of complex systems,
whether observed in natural phenomena or constructed systems like biological neuron networks,
power grids, social connections or the Internet, have seen significant advancements in recent research,
as highlighted in [10-15]. To gain deeper insights into contemporary systems, it becomes imperative
to examine both the network structure and dynamic properties of complex networks.

Recent studies have extensively investigated the synchronization dynamics of CDNs composed of
coupled oscillators, deriving synchronization criteria for networks with coupling delays, considering
both delay-independent and delay-dependent stability of the synchronization manifold. Moreover,
researchers have increasingly focused on synchronization phenomena within complex networks,
serving as a framework for understanding various phenomena. Synchronization occurs when the
discrepancy between driving and responding vectors approaches zero in norm. Furthermore, the
concept of stability, as explored in works such as [16-22], also provides insights into the idea of
synchronization.

Achieving synchronization among CDN nodes is a complex challenge influenced by architectural
intricacies, network topology, environmental factors, and connectivity efficiency. Control mechanisms
play a pivotal role in enabling engineering system designers to achieve impressive performance by
seamlessly adapting to varying environmental conditions. This adaptability is crucial for engineering
systems to function effectively and reliably in diverse contexts. Consequently, a critical area of
research revolves around addressing synchronization challenges in CDNs, particularly through the
incorporation of feedback control strategies. Various control approaches have emerged in the
literature, including model predictive control, state feedback control, stochastic control, adaptive
control, non-fragile control, and pinning control, as documented in prior research [23-27].

Real-world networks, such as mobile communication systems, citation networks, and
cyber-physical setups, frequently depend on time-triggered schemes for data exchange among
sensors, controllers, and actuators. However, there are disadvantages to using synchronization
methods designed for complex networks with time-triggered schemes. Recent research has explored
diverse aspects, including the synchronization of real-time tasks in time-triggered networks [28],
adaptive pinning synchronization in networks with negative weights and its application in traffic road
networks [29], enhancing security in time-triggered real-time systems through task replication [30],
and achieving exponential synchronization of chaotic Lur’e systems with time-triggered intermittent
control [31]. To effectively result of the burdens on communication networks, the adoption of
event-triggered methodologies has emerged as a promising strategy. The fundamental premise
underlying event-triggered control/communication schemes revolves around the concept that the
execution of control inputs and system transmissions is dictated by the occurrence of predefined
“events.” This approach is engineered to uphold the intended control performance while
simultaneously alleviating the strain on communication networks [32,33].

In response to the challenges posed by communication networks, the adoption of event-triggered
methodologies has emerged as a promising strategy. Event-triggered control/communication schemes
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stand in contrast to conventional time-triggered approaches, effectively alleviating the strain on both
network communication and controller computational costs. Existing event-triggered control
techniques can typically be classified into four main categories: dynamic event-triggered control,
self-triggered control, periodic event-triggered control and continuous event-triggered control.
Various event-triggered synchronization control strategies tailored for complex dynamical networks
have been proposed in several sources, utilizing mathematical tools such as Lyapunov stability theory,
linear matrix inequalities, Markov process theory, and impulsive control theory to formulate
event-triggered controllers [34—41]. For instance, in [35], a robust H, pinning synchronization
method for complex networks with event-triggered communication is introduced, employing
Lyapunov-Krasovskii functional (LKF) and matrix inequality techniques for controller design.
Similarly, [36] explores an event-triggered pinning control approach for discrete-time stochastic
complex dynamical network synchronization, utilizing Markov process theory and stochastic analysis
for stability analysis. Another study focuses on coupled reaction-diffusion complex network systems,
applying finite-time stability theory and LKF to design event-triggered controllers, which outperform
traditional continuous-time control methods [37]. Moreover, [38] suggests an event-triggered delayed
impulsive control approach for CDNs with coupling delay, utilizing LKF and impulsive control
theory. In [42], a dynamic event-triggered control method is introduced as an alternative to static
event-triggered control systems, aiming to further reduce information usage and energy consumption.
However, dynamic approaches introduce complexities such as Zeno behavior, where an infinite
number of triggers occur in a finite time span, posing challenges for event-triggered control systems.
Consequently, it becomes crucial for event-triggering conditions to ensure a minimum constraint on
time intervals between triggering moments to prevent Zeno behavior.

Recent literature has explored the concept of dynamic event-triggered control in various contexts,
as evident from works such as [43-50]. [43] likely contributes to the field by advancing dynamic
event-triggered control methodologies and their applications. [45] may focus on dissipative systems,
shedding light on energy-efficient control strategies. The authors in [46] explore novel triggering
mechanisms and performance analyses in specific scenarios. [47] studied event-triggered control’s
utilization within cluster systems, optimizing resource allocation. The authors of [48] researched the
balance between communication and control efficiency in event-triggered systems. The authors
in [49] introduced a disturbance-based switching mechanism for robust synchronization, while [50]
proposed a memory-based strategy for efficient global synchronization. These contributions expand
the applicability of event-triggered control in chaotic Lurie systems, addressing challenges related to
disturbances and global synchronization. It is well-known that proportional-integral-derivative (PID)
controllers have been widely applied in industry for operation simplicity and good system
performance. In [51], researchers utilized the linear matrix inequality technique to create an
event-triggered fuzzy PID controller. This research effectively expanded the use of event-triggering
mechanisms into PID control for linear time-invariant systems. However, only a few works have
investigated the feasibility of PID control applied to complex networks. Motivated by the discussions
above, this study aims to make significant contributions to PID control in CDNs with hybrid delays.
The main contributions of this research are outlined below:

e In this paper, there is the first attempt to study a synchronization of PID control problem in
CDNs by introducing a dynamic event-triggered mechanism. This novel combination aims to
achieve exponential synchronization for CDNs. This contribution advances the understanding of
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synchronization techniques in complex systems.

e Different from others in [52, 53], we have introduced a PID-based event-triggering mechanism
inspired by the structure of the traditional PID control law. This novel mechanism takes into
account the influence of the system’s proportional, integral and derivative components, with
parameters designed in harmony with those of the PID controller.

e To establish the theoretical support of our approach, we carefully construct a suitable LKF. We
derive its properties employing linear matrix inequalities (LMI), which facilitates the analysis of
the complex dynamical networks under consideration. This step is important in demonstrating
the feasibility of achieving exponential synchronization within our proposed framework.

e Recognizing the significance of real-world uncertainties, we intensively look into the impact of
parameter uncertainties on the considered system. Through rigorous analysis, we examine the
system’s exponential synchronization behavior using PID control parameters within the dynamic
event-trigger mechanism. This exploration of parameter uncertainties adds a layer of practical
relevance to the theoretical results.

e Finally, to show the effectiveness and validity of our theoretical contributions, we provide a
comprehensive numerical simulation. This showcases practical scenarios and demonstrates the
outcomes of our proposed approach.

The subsequent sections of the paper are organized as follows: Section 2 introduces essential
preliminaries and presents the problem formulation. Section 3 establishes the Exponential
Synchronization Criteria for general complex dynamical networks, employing the PID controller
within the dynamic event-trigger mechanism. Section 4 extends the analysis by incorporating
parameter uncertainties into the complex dynamical networks. This section critically examines the
resulting impact on exponential synchronization. The paper concludes with Section 5, where a
summary and conclusive remarks wrap up the discussion.

Notation: To be clear, the following symbols are first explained in a simple way
T: The transpose of a matrix or a vector.

R”: The n-dimensional Euclidean space.

R™"™: The set of all n X m real matrices.

# > 0: The matrix # is symmetric and positive definite.

: Symmetric terms in a symmetric matrix.

I,: Identity matrix.

diag{- - - }: A block-diagonal matrix.

Anax(G) (Amin(G)): The largest (smallest) eigenvalue of G.

|||l The Euclidean norm for given vector.

2. Problem formulation

Consider a controlled complex network consisting of N nodes with hybrid delays [5, 16,54]. Each
node of the dynamical network is a nonautonomous n-dimensional systems, which is given by

N N N t
() = )+ fE0)+ ). E@x 1)+ Y HOrxi(t - at) + Y F10s f xj(s)ds
— — =

J= J J=1
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+u;(1), 2.1

where i = 1,2,..., N is the number of nodes in the Network. x;(t) = {x;1(¢), x»(?), ..., x;,(¢)} is the
state variable of the i”* node at time ¢. <7 is the known state matrix. f(.) : R” — R”" is the nonlinear
function which is continuous and differentiable that represents the dynamical behaviors of the system.
The matrices &;;, 7¢;; and _¢;; represent the outer coupling and network topology structure. When
there is a direct connection from node i to node j, the values are &;; > 0, JZ; > 0 and ¢Z; > 0;
otherwise, they are 0. These matrices also satisfy the conditions &; = — Z?’zl &ij, i = — 27: , 7€ and
Hi=~— Z?’:l ;; to maintain internal consistency. ®;, ®, and ®; represent the inner coupling matrices
which interconnect the subsystems. a(?) is the time varying discrete delay, and ¢ is the distributed delay,
satisfying the condition 0 < a(7) < @ and 0 < @(¢) < ¢ < 1. u;(¢) is the control input to be designed.
Now, consider the reference node S (¢) € R” in the form which satisfies

S = AS@) + f(SO). (2.2)

Define the synchronization error as ¢;(f) = %;(t) — S(f). Then, by subtracting (2.2) from (2.1), we
have the dynamical error system as:

N N
Gilt) = o)+ F@D)+ Y E@ip D)+ Y H®upi(t — (1))

=1 j=1
N ¢

+ > 710 f @i+ o), (2.3)
J=1 "~

where 9 (¢i(1)) = [f(x;(t)) — f(S(¢))]. For general complex dynamical networks with network
topologies, we propose PID control protocols, which are described by

Yi() = %P<Pi(t)+52/uf¢i(S)dS+%D¢i(t), (2.4)
0

where %p > 0, %; > 0 and %p > 0 are the proportional, integral and derivative control gain values,
respectively, which are to be designed for the i node.

Remark 2.1. PID control is a well known effective approach to various real-world control
challenges. It is referred to as a universal controller because the proportional gain p increases
control effort when there is a significant control error-making its function quite clear. With the
integral action (%), the subsequent control uses previous control error values, and the derivative
gain (%p) relies on expectations of future error values. In a dynamic event-triggered control system,
the main goal is to minimize information and energy sources. The PID controller plays a crucial role
by boosting control efforts when errors are significant, fitting well with the dynamic nature of the
CDNs. Adding the integral action lets the control system learn from past data, and the derivative gain
helps predict future errors—useful for navigating the changing dynamics of complex networks. In
dynamic event-triggered control systems, PID works smoothly, making decisions that align with the
goal of minimizing information use.

In order to reduce the communication burden of the shared network in the control process, in this
paper, a dynamic event-triggered mechanism is introduced to judge when the measured data should be
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transmitted to the observer. For clarity of the dynamic event-triggered mechanism, let us define the
triggering time sequence for the i node iteratively expressed as 7, | = inf{r > #}|.%(r) < 0}, and the
event generator function .Z;(-) can be taken from [55] and can be given by

1
L) = =20 + V] ()Yi(1) — w] (Dwi(D), (2.5)
Ui
where v; and y; are two given positive scalars. For 7 € [#, t,i .1)» wi(?) 1s defined by,

wi(1) = i) = Yi(1p), (2.6)

where W,(1}) is the i node of the control signal at the earliest triggering instant. The triggering instants
are denoted by {71};> ) and £, = 0. Also, the internal dynamic variable () should satisfy

D) = —pi 1) = w] (i) + ¥} (OFi(D). 2.7

Here, p; is the scalar value. From the above equation, Z;(0) > 0 is the initial condition.
Moreover, for all ¢ > 0,

) 2 ~pi (1) - Uli%(t).
By using this, we can easily obtain
1) = Z{0)e " > 0,
For the i node, the actual input actuator can be chosen as
wi(t) = ui(t)) = =Pi(th), Vtel[t,t, ). (2.8)

The following error dynamic system can be obtained by applying (2.6) and (2.8) to the error
system (2.3):

N N
Gilt) = o)+ D@0)+ Y E@ip D)+ Y Hi®upi(t — (1))

j=1 j=1

N '
T Z Jij0s f690j(s)ds = Vi) + wi(). (2.9)
= -

By (2.4) and the system (2.9), we can obtain the following:

N N
Gi) = Aet)+ G@0) + ). EO1p(0) + Y IOt - ()

j=1 j=1

N f !
205 [ o = Uine)~ 2 [ s = Upp + 00, (210
Jj=1 =
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The error system can be written in compact form as

o) = o)+ 9 (e1) + (& ®@0)p(t) — (F @O)p(t—a(®) +( 7 ® ®3)f o(s)ds — Upyp(t)
=6
—%f o(8)ds — Upep(t) + w(t). (2.11)
0

The upcoming Assumptions, Lemmas and Definitions are very useful to prove our theoretical
results.
Assumption H1. [55] The nonlinear function f(-) : R* — R" satisfies the following the sector-bounded
condition:

[f(xX) = fO) = T1(x = I [F () = f(») = Talx — )] <0,
for any x,y € R", where Y| and Y, are known constant matrices.

Lemma 2.2. [55] The following inequality holds for the H1, for the matrices 'y and Y, such that
[ (1) H T T H (1) ]<0
E40) « 1 [ D) |~ 7

T Un® T (Iy®Y2) + (Iy® To) Iy ® T1)T T (In®T)" + Uy T)T
1= > 2= .
2 2

where

62/11 %2

Lemma 2.3. (Schur Complement) [56] The LMI, % = [
Uy U

02/11 - 02/1202/251@/172‘ <0.

] < 0, is equivalent to U, < 0,

Definition 2.4. [57] The complex dynamical network with hybrid delays (2.1) is said to be
exponentially synchronized with target node (2.2) if there exists two constants € > 0 and M > 0 such
that

lx(5)=S®I < Me™“, i=1,2,...,N,

for t > 0 and any initial conditions.

The goal of this research is to develop a set of PID controllers (2.4) in order to guarantee the
exponential synchronization of the CDNs (2.1) and response system (2.2). Specifically, we are interest
in if the CDN with hybrid delay error system (2.11) is exponentially stable.

3. Main results
The following theorems, when applied to a dynamic event-triggered PID control method with linear
matrix inequalities, would enforce the appropriate exponential synchronization of CDNs with hybrid

delays.
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Theorem 3.1. If given parameters o, ¢ < 1, p, u, v, B, Up, % and %p and the Assumption H1
are true, then the CDN (2.1) is said to be exponentially synchronized with (2.2) if there exist positive

: . Y20 2 Wy Ws
definite matrices ¢, (r = 1,2,...,5), A, %’zand%:[ *Pl %]>O,%:[ %4 7/2]>0
and appropriate dimension matrices N, (r = 1,2, ...,8) and positive scalars &, and &>, such that the
following LMIs hold:

3= Jiar | <0, 3.1)

where matrix entries are provided as follows, with any missing entries assumed to be zero:

S = (B + B+ 6+ 6+ Py + §Cs + 2B, + 2BW, +2BWs + ULTEUp + 2| N A + N(E @
1 P

©)) — MU

+ 81%;53%;: - 82/‘1‘\1,’ 312 = 2,8WZT + e/VlT(% ® @2)T + L/Vz[d + ((5) ® @1) - z%p];

i3 = Up B U — MU+ N5

%+(Cg)®®1)—%p

+281%PTE3%1,' J14 = e@l +%T+%T+OZ/PTE1%D—

’

lJ%%D+</V1

+ M

,53{4'((5’@@1)—%13

+ 281%pTE3%D; Jis=U =)W+ M5

M+(g®®1)—%p

Ji6 = MN( I ®03) + A5

d+(£®®l)—%P],~Sl7 =M

%+((§®®1)—%p

+ 285, Jis = 7/5T +

N

«527"'((5)@@1)—%13]; 19 =M Yio = JVlT—é‘zYz,' I = —e (1 =)+ 2BW5+ N>(H ®O,);

J03 = MU+ N(FCROy); Joa = W —

JV2+~'/’§‘?/D]+M(%®®2); J2s = (1 =) W5+ N5(F ®@0y);

J26 = (I ®03) + Mg

«%ﬂ®®2]; 327 = N(H ®O,); Jng = M(H ®O);Tno = Ny Joio = N
333 = U'B\U - 25U + e U B WU Fsa = U ENUp — [c/‘/a%n + =/V3] + &1+ U B Up — NaUi;
J3s = —NsU; Jz6 = ,/16[/ ®®3] — NU; J31 = —NU; I8 = —MU; Jz0 = ~'/V3T; J310 = JV3T;
Saa = ULE\Up + €+ Co — 2[%02/1) + «/‘{1] + &1 U EalUp; Jas = _[%%D + JV] Ja6 = M( I ®

0;) - [%%D + Mg F a0 = AT Ja0 = A

;47 = V/ST— [e/%%D*':/V

; Jug = [J/S%D + M

o~ - o~ ~ - N .
Jss = —(1 = e X%, Is6 = N(F ®Os); I = A5 Is10 = NT; Jg6 = —S2Cs + Ne(_F ® Os);
J67 = M(_ I ®O3); Jos = N(F ®03); Yoo = J1/6T’. Yei0 = %T’. S = —e G, + W g = %T;
Jr9 = M7 Jri0 = M Jss = —eFC; Jno = A7 Tsio = A5 oo = —Ei — &1l Jwowo = —&al;
i = diag{ LB zpardbin  —pntBhny

Uy ’ v > 1%
= = diag{uill, ol #1}, =, = diag{’;—:I, 21,..., ’:—1’:1}, 5= diag{,ull, wl, ..., ,uNI}.

Proof. Consider the Lyapunov function according to the error system (2.11) that can be given by

7
Vi = ) Vi, (3.2)
i=1
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where

Vi) = ¢ (01(0),
vio=[ oo a-eo || 5 7| oS |

o=l oo oo || % 0| 50 )

! !
1m0=f ”“”WW%ﬂww+j‘ XN (W Grp(v)av,
t—¢ t—a(t)
f

f
Vs(t) = f P0G (V) Gp(v)dv + f QT VG,

t—-¢ 1—a(r)

V(1) = f PO (V) Bap(v)dy + f f P50 (v)Esp(v)dvdo,
0 t+6

N
1
Vi(r) = — 9.
(1) = ZU ()
Hereafter, let us consider the following notations:

Yi() = @(0: Ya(t) = @t — a(0): Y3(t) = ) eWdv: Ya(t) = ¢(r); Ys(t) = @t — a0));
Yo(t) = [, 0Wdv; Y+(t) = @(t = a); Ys(t) = p(t — ).

Now, taking the derivative of the considered Lyapunov function can be given by

Vi(0) + 2BVi(t) = 2Y{ (%, Ya(t) + 2BY] (0%, Y1 (1),
Va(0) + 2BVa(1) = 2YT (D01 Ya(t) + 2Y3 (DH5 Ya(D) + 2(1 — )Y #5Y5(1)
+2(1 = )Y, (OHAYs(1) + 2BY] (D1 Y1(1) + 4BY{ () #3Ys(1)
+ 2BY] (N W5Y,(D),
V() + 2BV5(t) = 2Y[ (OHLY4(t) + 2YT (O Ya(t) + 2Y] #5Ys(t) + 2Y5 () W6 Ys(2)
+ 2BY (DY (1) + ABY ] (DW5Y+(1) + 2BY; (D H6Y+(D),
Va(0) + 2BVa(r) = Y (VG Y1(1) — e Y] (61 Y3 (1)
+ Y[ (6.Y1(1) — e (1 - )Y, G0,
Vs(0) + 2BVs(1) = Y{ (63 Ya(1) — e Yy (63 Ys(1)
+ Y, (DC,Ya(t) — e (1 = YL (0C,Y5(D),
%m+%%m=ﬁ®%ﬂwwcﬁm%nw—f%jﬂJwﬁﬂmm

t—0

C|>—*

N
Va() + 28V4() = ) —

i=1

)

i=1

(1) + 2BV+(1),

[ piZ:(1) — 0" (w(t) + ,Ui\P,-T(f)\Pi(f)

SIH

AN
+2B )~ 0.
i=1 !

(3.3)

(3.4)

(3.5)

(3.6)

(3.7

(3.8)
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N t t
= 3" L0 - o W) + ¢ OU EUngp (1) + f o' Vvl E U f p(v)dv
i=1 0 0

Ui
!
+ " (UL B\ Upp(D) + 29" OU) E\ U f e(v)dv + 20" (VU E1 Upp(2)
0

! N
1
+2 f & WAV EUpp(t) + 2B ) —D(1),
0 = Vi

N
== %%(’) = " (OZ0(1) + Y[ (OU B U Y\ (1) + YT (DU a2 Y5(1)
=1 !

+ Y] (OUL 2\ UpYat) + 2YT (OUp B2 Y5(t) + 2Y] (U B\ UpY4(t)

N
1
P2 OU EUY0) + 2B )~ 1), (3.9)
i=1 1
where B, = diag(®, %2, .., ") and B, = diag(L, L., L).

From (3.8), using Jensen’s inequality, we can get the following inequality:

! 1 t !
- f @' (VEsp(v)dv < —5( f go(v)dv)%( f go(v)dv). (3.10)
=6 =6 =6

From (2.5) and .Z(¢) < 0, we can get

N

N N
D L+ Y W0~ Y ol ) 2 0. G
i i=1 i=1

i=1
Any scalar g, that there exists can be obtained using the inequality above.

N
1
0<& ) — (1) = &1 (D) + &1 Y] (DU EUpY1(1) + 1 Y5 O] E U V(1)
i=1 "t
+ 1Y, (OUJ ZsUpYat) + 281 Y] (OUSL Z W Y5(t) + 28, YT (U EsUpY4(t)
+ 2 Y] (OU B3 UpY4(2), (3.12)

where 3 = diag{u I, o1, ..., unl}.
We can obtain the following from Lemma 2.2 and any scalar &;:

—26; YT (TG (1)) — £2Y] (DT, Y1(1) — &G (p())G (9(1))) < 0. (3.13)
It is evident that 0 = @(¢) — Y4(¢), and the following equality exists for any free-weighting matrices
N, (r=1,2,..,8):
0= 2[Y1T (OM + YT ()N + Y3 ()N + Y] ()N + YO N5+ Y@ N + Y3 (1) N5

+ Yg (M| X | L @(t) + (G (p(1))) + (& ® Op(t) + (H ® Or)p(t — a(t))
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+( 7 ® ®3)f eW)dv —Y(t) + w(t) — Yy4(1)|.
=0

Now, combining the equations from (3.2)—(3.14), we have the following inequality:
V() +2BV(t) < TN ()IZ(),

where
2(t)=[Y1T(t) Y@y Y@ Y@ YI@ YI@) Y@ YI@®) o) @) 270

T

and @(z):[@f(z) 220 .. 20| .

Now, we can easily obtain that
V() +2BV(t) <0.
Following a similar line as in [58], we have
V(0) < Alle(O)I,
where

A= /lmax(%l) + /lmax(%) + /lmax(%) + g/lmax((gl) + g/lmax(ch) + g/lmax(%)
+ g/lmax(%t) + /lmax(gBZ) + 52/lmax(<65)~

It becomes known that
N
_2'31 2 1 —Zﬁl
V() < V(0)e < | Alle0)||” + E —2,0) e .
i Vi

On the other hand,
V(t) > ePo" (0B1¢(t) > e Amin B DI

Thus, one has

e P

o] < \/A||¢(0)||2+Z§LU%.@,-(O>
4 - /lmin(%l)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

As a result, it completes the proof of Theorem 3.1. Therefore, from Definition 2.4 we see that the
CDNs (2.1) and (2.2) are exponentially synchronized and demonstrate that the CDN error (2.11) is

exponentially stable.

Remark 3.2. Excluding Zeno Behavior: We need to analyze whether the system has a minimum
event-triggered time interval strictly greater than zero, which means that there is no Zeno behavior.
Assume that there exists Zeno behavior for at the i node, which implies that there exists 0 < T < oo

such that limy_,o, tj{ =T, where T is a positive constant.
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From (3.17) we know that there exists a positive constant My > 0 such that |p;(t)| < My forall t > 0
andi=1,2,...,n. Then, we have |u;(t)| < 2M,¥,.
Let & = T 20!

= Tt v € > 0. Then, from the property of limits, there exists a positive integer
N(&y) such that tl €T —-&,T), Yk > N(&)).
By the triggering instant ti and event-triggered condition with Z(t) > 0, we can get the following:

()] < Y22 >

Given Iu (z‘)l < 2My¥Y; and I(p,-(t,"()l = 0 for any triggering time t., we conclude that the sufficient
condition to the above inequality is

(t — 1)2Mo¥; < %e—éw;»'
This leads to
tN(fo)H tN(go) 2 %e %(‘O"Jrvif)’;wsom,
> @e—%w}iﬂ
- 2¥ My v,
This contradicts the condition t, € [T — &, T, Yk > N(&). Therefore, Zero behavior is excluded.

= 2&.

In the next subsection we will investigate the uncertain CDNs with hybrid delays, and finding the
results of the CDNs with given PID control parameters leading to exponential synchronization. Linear
matrix inequalities are employed to accommodate uncertainties.

3.1. Complex dynamical networks with coupling parameter uncertainties using PID controller

Consider the error CDNs (2.10) 1nV01V1ng coupling v uncertamtles In thls context, replace the
matrices <7, 0,,0, and ®; with A + AA, @1 + A@l, ®2 + A@z ®3 + A®3, respectively. These
variables correspond to an N number of nodes and each node as an n-dimensional subsystem in the
following form

N N
(D) = (A+ MDD + D (@i(0) + D E(O) + AB)x;(1) + ) Hii(©s + A (1)x;(t — a(1))

j=1 j=1
+ Z Jii(©5 + A@3)f xj(8)ds — Uippit) - %If @i(8)ds — Upgi(t) + wi(1),  (3.20)
j=1

where AA(?), A@l(t), A@Q(t) and A@3(t) are the uncertain time varying matrices with norm bounded
and satisfy the following:

[AA(t) A®(f) AB(7) A’@(r)]:?M(r)[Hl M, I m], (3.21)

where, T and [, (a = 1,2, 3,4) are the known constant matrices, and M(t) is the unknown time-varying
matrices with suitable dimension and satisfying the MT(t)M(f) < I. Now, the compact form of error
system can be given by

(1) = (A+AAD)PD) + D(piD) + (£ ® (O, + AB,(1)))p(t) — (S ® (O, + AL (1)))p(t — (1))
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+( F ® (O + A1) | @(s)ds — Upplt) — U f @(s)ds — Up@(t) + (1), (3.22)
t—0 0

Theorem 3.3. For given parameters ¢ < 1, p, u, v and 3 with known control parameters Up, % and
Up and the Assumption H1 being true, the CDNs (3.20) are said to be exponentially stable if there exist
positive definite matrices 6\, 6», 65, 64, €5, B\, B and W, = [ %l % ] >0, %), = [ %4 7/2 ] >0
and appropriate dimension matrices N, (r = 1,2, ..., 8) and positive scalars Ay, 1>, &, and &,, such that
the following LMIs hold:

5=[5 <0 a2

where,

311 = (B + B+ G\ +Cr+ Bo+ G5 +2BBy+2BW +2BW ot UL B1 Up+2| N1 A+ N[ (ERO ) — N Up |+

81‘?/PTEy?/p—Sgrfl+/11H1H1T+/12H2H§;’512 = 2ﬁ%T+c/VlT(%®62)T+</V2 A+((9@®b“‘\1)—2%p

+/11H1H3T,'

S = UL U — MU+ N A+(E®O)) - Up + 812U UiEs; S =% + W+ W]+ w] B U -

[J{%D+J%]+MA+(£®@1)—%,:

+ 26\ UL EsUn; 315 = (1 — W + JVS[A +(E®0) - %]

Si6 = M(SF ® 03) + M| A + (£ ®©) -~ U + LI S = M|A+(E®O) — Up | + 285

§18=7/5T+«/V8

A+(E®0O)) - %P]; S = M Sio = M- &2 3 = MY Iz = MYy
I = =¥ = )6, + 2pW5 + M(H ® Oy) + MILIL; I3 = MU + MA ® 0); Ju
W~ </V2+</V%D]+¢/V(t%ﬂ®®2) S5 = (1 =)W+ N5(H ®Oy); Jns = Ni( /®®3)+</V6 AR, |;

I—J
I Il

327 = M ® ®2); 328 = M ® ®2); 329 =M 3210 =M 3212 = JVzT’ 213 = </V2T; 333
U\ U2 N5 Ut e\ U B Uy s = %,TEI%—[J%%% 1+ U B Up—Nay; 335 = —Ns Uy,

J36 = =/V3[/ ® ®3l - MU J31 = — MU I8 = — MU J39 = %T; J310 = =/V3T; J312 = %T;

y

3513 = MY Ju = UL + G + Cs - 2[%% = m] + a1 U] Exlp; Jus = —[%%D + A5

S = (I ®O3) — [%% + %] Sy = # - [a%% + N o = N

N §48 = [e/%;?/l) + M

3410 = A" a2 = MaXs Sz = M5 Jss = —(1 = e 5, Jse = N5( ® 03); J59 = N
\5510 =AM 510 = e/VT Is13 = ,/VT R :A—%%s + J%ﬁ/ ® 05) +:1\1H4HT; Se7 = M (8;63);
Ses = ,/V(/ ®®3) R /AR 10 = W/ARRTIE NeX; 613 = MoV I77 = —6_2'8“514'2,37/6; J78 =
7/ \579—</V J710—JV \5712—=/VT \571%—</VT \588:_6_13;(53 389—1/1/ \5810—</V8 ,
Ss12 = MY, Js13 = MY; Jo9 = —E1 — &1; Jio10 = —&2l, I = diag] pl+2ﬁ+ﬂl, _p2+vzf+m, _pN:fvﬁWl}

Ji212 = =4l J1313 = —Aol.
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Proof. Based on the condition in (3.21), we are able to express that the subsequent A + AA, @1 +A@y,
@z + A@z, and ®3 + A®3 are replaced with A + ™ OII, O+ TM(DIL,, Oy + YM(H)II;, O3 + ™ (DI,
respectively. Then the LMI (3.1) for the uncertain condition is equivalent to the following condition:

I+ F+ P, (3.24)
0, T%T r TJ/IT m, T
I15 T A" T I1;
0 YA AT 0
0 AT v 0
0 AT AT 0
Fr=| Wy (MO T AT | +| a7 MO I |, (3.25)
0 AT T 0
0 T %T T %T 0
0 0 0 0
0 0 0 0
0 0 0 0
I1, T‘/VlT ' TJVlT I1, !
0 T T 0
0 A" T 0
0 TA,T v 0
0 AT AT 0
Fr=| 0 [MO| T4 | +| T M D| O (3.26)
0 T AT T AT 0
0 T ‘/VST T :/VgT 0
0 0 0 0
0 0 0 0
0 0 0 0

By Lemma (2.3), necessary and sufficient conditions,

m, m, T TJ1/7T T‘/VlT
I (| s T 1A
0 0 T%T T%T
0 0 AN VA
0|l o TAT || TAT
Fr<a| My (| Wy |+ a7 || T |

0 0 TJ%T T%T
0 0 TJVST T%T
0 0 0 0

0 0 0 0

0 0 0 0
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my(mY (T T

0 0 T’/VZT ?’/VZT

0 0 T,/V,)T ?%T

0 0 AN IRV

0|l o T || TS
Tl 0 || 0|+ FaT || T

0 0 TJ%T T(/%T

0 0 TJ/ST T%T

0 0

0 0
0 0 0 0
0 0 0 0

Applying Schur complements, we can obtain from (3.23) that 3, < 0. This complete the proof.

Remark 3.4. This work addresses the exponential synchronization of CDNs with hybrid delays using
PID controller, in contrast to some research results on exponential synchronization of CDNs with time-
varying delays [24, 54, 57]. In contrast to the approach used in [24, 54, 57], which investigated time
scale, sample-data control, and impulsive effects, respectively, we studied PID controller with event-
triggered mechanism using LMIs to directly incorporate the system’s numerous coupling components
in the hypothetical matrix in this paper. In addition, the method in [54] is distinct from applying
appropriate Free-weight matrices to solve the problem with (3.1). As a result, the approach presented
in this work is more effective while maintaining the system’s complexity.

Remark 3.5. Compared with [54], which did not take into account the influence of any controls while
studying the synchronization of multi-weighted complex dynamical networks, our proposed results can
guarantee exponential synchronization for CDNs with hybrid delays and event-triggered mechanisms.
Particularly distinct from the standard results of PI/PD controllers in [52] and [53], in this research,
we investigate PID controller as well as parameter uncertainties with PID controller, which is distinct
from previous studies. In Table 1, a comparison table with previously published results is shown below.

Table 1. Comparison with other works.
[10] [6,24,54] [52] [53] Our Paper

CDNs v o v vy
Exponential Synchronization X v X X v
PI/PD Controller X X v v v
PID Controller X X X v v
Uncertain terms X X X X v

4. Numerical examples

This section aims to illustrate the effectiveness of the main results developed in this paper using two
numerical examples adopted from the literature.
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Example 4.1. Consider the general complex dynamical networks consisting of 5 nodes and each node
as a 2-dimensional subsystem in the following form:

!

5 5 5
5i(1) = A xi(0) + G (@) + ) E @)+ ) HOaxi(t — a®) + )| F1iOs f xj(s)ds
o

J=1 J=1 J=1 =

!
— Uippi(t) — %If @i($)ds — Uipgi(t) + wi(t). (4.1)
0
The state and inner-coupling matrices are constructed as follows:

-3 05 -01 0 O
05 -04 -1 O O

d:(ffs f?g) E=H#=g| 1 14 -3 0 02|,
A 0 0 -1 06
0 0 0 04 -2
025 0 015 0 035 0
®1‘( 0 025 ) ®2‘( 0 0.15)’ ®3‘( 0 0.35)

Also, the nonlinear dynamical function can be chosen as

(1)) :[ tanh(0.3%p; (1)) ]’

tanh(0.41%p;»(2))

which satisfies the condition that (' and (', can be given by

-0.6 -0.3 -0.33 -41
T“( 0.1 0.1 ) Tz‘( 0.3 0.25)’

since parameter and threshold values can be chosen as ¢ = 0.5, =0.02, p1 =p, =p3 =ps =ps =5
and vy = vy =v3 = vy =vs = 4. Also, g = 0.15,u, = 0.18,u3 = 0.16,u4 = 0.2, us = 0.12 and the
upper bound a = 2.5. Due to the absence of control strategy in place, the state trajectories of the nodes
in delayed CDNs cannot be synchronized with the trajectory of the isolated node. This is primarily
because of the coupling effects and time-varying delays that are present. Therefore, we suggest using
the PID controller in conjunction with the dynamic event-triggered strategy to synchronize all of the
states to the target node. This will allow the complex network that is being considered to reach a state
of synchronization. Eventually, to reach an exponential synchronization for delayed CDNs, our plan is
to use a proportional control algorithm. According to the first theorem, if we assume that % and %p
will always remain equal to zero, the delayed complex dynamical network will be able to accomplish
exponential synchronization when %p = 25. The synchronization error trajectories ¢;; and ¢, under
the proportional controller are depicted in Figures 1 and 2. An illustration of the control input for the
delayed CDN can be seen in Figure 3.

AIMS Mathematics Volume 8, Issue 12, 28976-29007.



28992

State Trajectories
h oA L M LA o 24 v ow oA o

02 04 06 08 1 12 14 16 18 2
Time

Figure 1. Evolution of synchronization error ¢;;(¢#) (Under Proportional controller), (j = 1,
2,3,4,5).

=)

State Trajectories
L S T L T I S

0 02 04 06 08 1 12 14 16 18 2
Time

Figure 2. Evolution of synchronization error ¢ () (Under Proportional controller), (j =1,
2,3,4,5).

Control Input

Time

Figure 3. Control input.

Next, if we assume that %p will always remain equal to zero, the delayed CDNs will be able to
accomplish exponential synchronization when %p = 10 and %; = 55. The synchronization error
trajectories ¢j1 and ¢j under the proportional controller are depicted in Figures 4 and 5. An
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illustration of the control input for the delayed CDNs is shown in Figure 6.

5 T
Pu(t)
4 en(t) [
ws1(t)
3 e (t) |
@s1(t)
2 1
@
2
§1
4
2
T 0 -
=
<)
il
7]
2
3
4
5 . . . . . . . . .
0 02 04 06 08 1 12 14 16 18 2

Time
Figure 4. Evolution of synchronization error ¢;;(f) (Under Proportional Integral controller),
(J=123,4,5).

5
e12(t)
4r w2(t) [
Pn(t)
3r wa(t) |
Psa(t)
2
@
2
s 1r 1
©
2
T 0r - =
=
Q
gy 1
7]
2 K
3t 1
4
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 5. Evolution of synchronization error ¢»(f) (Under Proportional Integral controller),
j=1,2,3,4,5.

Control Input

-100

Time

Figure 6. Control input.

Next, if we assume that 7% will always remain equal to zero, the delayed complex dynamical
network will be able to accomplish exponential synchronization when %p = 40 and %p = 0.55. The
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synchronization error trajectories ¢ and ¢j under the proportional controller are depicted in
Figures 7 and 8. An illustration of the control input for the delayed CDN can be seen in Figure 9.

State Trajectories

Figure 7. Evolution of synchronization error ¢; () (Under Proportional Derivative
controller), (j =1, 2, 3, 4, 5).

State Trajectories

Figure 8. Evolution of synchronization error ¢;»(f) (Under Proportional Derivative
controller), (j =1, 2, 3,4, 5).

Control Input

100

50

Input

-50

-100

150 . . . . . . . . .
0 5 10 15 20 25 30 35 40 45 50
Time

Figure 9. Control input.

Next, the delayed complex dynamical network will be able to accomplish exponential
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synchronization using PID controller when %p = 40, %; = 55 and %p = 0.65. The synchronization
error trajectories ;1 and ¢ under the proportional controller are depicted in Figures 10 and 11. An
illustration of the control input for the delayed CDNs can be seen in Figure 12.

State Trajectories

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

Figure 10. Evolution of synchronization error ¢;(f) (Under Proportional Integral Derivative
controller), (j =1, 2, 3,4, 5).

State Trajectories

5 . . . . . . . .
0 02 04 06 08 1 12 14 16 18 2
Time

Figure 11. Evolution of synchronization error ¢>(f) (Under Proportional Integral Derivative
controller), (j =1, 2, 3,4, 5).

Control Input

100

50

Input

-50

-100

-150

Time

Figure 12. Control input.

By using the MATLAB LMI tool box, we have obtained the scalar values £, = 8.6389, &, = 1.0853,
and positive definite matrices are given by
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o 2.1399 -0.2508 o = 1.5791 -0.3814 o’ = 49061 —1.4585
P71 02508 1.6640 |7 727\ —03814 1.0592 |’ 37| —1.4585 4.0388 )’
. 2.9941 0.2839 " 1.7289 0.1172 26.8389  0.0048

47102839 20446 )0 737\ 0.1172 0.0866 |7 77\ 0.0048 -0.0128 )’
1.1918 —0.0527 2.5062 -0.1357 7.6356 —0.2856
‘/Vl‘( ~0.0527 0.0065 ) ‘/VZ‘( —0.1357  0.0490 ) ‘/‘/3‘( -0.2856 0.0350 )
9.8037 -0.3312 4.4903 0.0339 1.2464 0.0088

%‘(—0.3312 0.0490 ) %‘(0.0339 0.0296)’ %_(0.0088 ~0.0001 )
= 3.6973 0.0116 e 4.5033 0.0128 % - 2.1399 -0.2508
=1 0.0116 0.0551 |’ 871 0.0128 0.0746 |° "' 7\ —0.2508 1.6640 )’

7 - 2.0314 — 0.1100 7 - 2.9759 0.2172 o - 1.0735 0.1313
27 ~0.1100 14816 ) 7> 7\ 02172 32190 )0 "* 7\ 01313 1.2715 )’

o [ 10984 0.1347 g _ [ 07948 02775 g, — [ 17240 0.179
>71 0.1347 13858 )° 7102775 1.1939 )’ 271 0.1790 1.9329 |

Example 4.2. Consider the general uncertain CDNs consisting of 3 nodes and each node as a 2-
dimensional subsystem in the following form:

3 3
(D) = (A+ MA@ + G (@) + ) 6O + ABIO)x;(D) + ) H(Os + ABLD)x;(t — (1))

J=1 Jj=1
3 ! t
+ Z Fii(©3 + A@3)f x;j(8)ds — Uppi(t) — gZ/ilf @i(s)ds — Uippi(t) + wi(1). 4.2)
=1 -6 0

The state and coupling uncertain matrices are constructed as follows:

3 1 -2 4 -2 -2

145 1.78 5 1 3 53
-1 2 1
~ (025 0 ~ (015 0 ~ (035 0
/‘[ O 22 ] ®1‘( 0 0.25)’ ®2‘( 0 0.15)’ ®3‘( 0 0.35)’
1 2 -3
2.54 3.52 1.54 032 1.54 032 1.34 022
Hl_(S.lS 0.61)’ H2‘(5.15 1.61)’ H3‘(0.15 0.13)’ H“‘(o.zs 0.41)'
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Also, the nonlinear dynamical function can be chosen as

_ | tanh(0.27 ;1 (1))
G (gi(1) = [ tanh(0.34* (1)) ]’

which satisfies the condition that [’y and ', can be given by

~0.54 -0.74 -0.43 —45
Tl_(O.lZ 0 ) Tz‘(o.32 0.2)'

The selected known parameters are ¢ = 0.5 and = 0.01, with the maximum allowable upper bound
set at a = 2.2. To achieve exponential synchronization for delayed complex dynamical networks under
parameter uncertainties, our strategy involves employing a proportional control algorithm. According
to the Theorem 3.3, assuming both % and %p are consistently zero, the delayed complex dynamical
network can achieve exponential synchronization with Zp = 31.

The synchronization error trajectories, ¢; and ¢ j», under the proportional controller are illustrated
in Figures 13 and 14. An illustration of the control input for the delayed CDNs can be found in
Figure 15.

State Trajectories
L N N = T ST B NS

0o 05 1 15 2 25 3 35 4 45 5
Time

Figure 13. Evolution of synchronization error ¢;;(f) (Under Proportional controller), j =1,
2, 3.

o

~
565

State Trajectories

LS N N e T )

2 25 3 3.5 4 4.5 5
Time

Figure 14. Evolution of synchronization error ¢»(f) (Under Proportional controller), j =1,
2,3.

o
o
o
o
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Control Input
T T T

Time

Figure 15. Control input.

Moving forward, applying Theorem 3.3, assuming %p remains constantly zero, the delayed CDNs
can achieve exponential synchronization with %p = 20 and %; = 60. The synchronization error
trajectories, ;1 and @), under the proportional controller are depicted in Figures 16 and 17. A
visualization of the control input for the delayed CDNs is presented in Figure 18.

Error State Trajectories
LS T N e s T ST R N

0 0.5 1 1.5 2 25 3 35 4 45 5
Time

Figure 16. Evolution of synchronization error ¢j;(#) (Under Proportional Integral
controller), j =1, 2, 3.

ST

Error State Trajectories
LS N e - T ST - R N

0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time

o

Figure 17. Evolution of synchronization error ¢ »>(¢) (Under Proportional Integral controller),
j=1,2,3.
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Control Input
200 T T T

100

Input

50

-50

-100

Time

Figure 18. Control input.

Continuing, if we assume %; remains constantly zero, the delayed complex dynamical network can
achieve exponential synchronization with %p = 50 and %p = 0.55. The synchronization error
trajectories, ¢; and ¢j, under the proportional controller are shown in Figures 19 and 20. An
illustration of the control input for the delayed CDNs can be seen in Figure 21.

Error State Trajectories
hoA b v LA o 4 v ow s oo
k-3

0 0.5 1 1.5 2 25 3 35 4 45 5
Time

Figure 19. Evolution of synchronization error ¢;;(f) (Under Proportional Derivative
controller), j =1, 2, 3.

5
P12(t)
4 e2(t)
Ps(t)
3
82y
S
8!
©
= 1NN NN
50 }“\ !'w IANAARAS
©
@ -1 ‘
]
W -2
3
4
0 05 1 15 2 25 3 35 4 45 5

Figure 20. Evolution of synchronization error ¢;(#) (Under Proportional Derivative
controller), j =1, 2, 3.
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Control Input
60 T T T

50

40

30

20

Input

Time

Figure 21. Control input.

Further applying Theorem 3.3, the CDNs can achieve exponential synchronization using a PID
controller with %p = 53, % =15, and %p = 0.65. The synchronization error trajectories, ¢;; and ¢,
under the proportional controller are visualized in Figures 22 and 23. An illustration of the control
input for the delayed CDNs is available in Figure 24.

pn(t)
pa(t) |7
P (t)

Error State Trajectories

. . . . . . . . .
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time

Figure 22. Evolution of synchronization error ¢;;(f) (Under PID controller), j = 1, 2, 3.

e1a(t)
P22(t) | 7
Pa2(t)

Error State Trajectories

i 0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time

Figure 23. Evolution of synchronization error ¢ »(f) (Under PID controller), j =1, 2, 3.
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Control Input
T T T

150

100 -

s0 i

Input
o
=

50 i

-100 -

150 . . . . . . . . .
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time

Figure 24. Control input.

By utilizing the MATLAB LMI toolbox, we can get the following scalar values €, = 4.5477, &, =
7.0519 and positive definite matrices:

- 2.5546 —0.0058 v 838.5003  0.6866 i - 1.1224  —0.0069
P71 —0.0058 25131 7 727\ 09866 847.1332 |’ 371 ~0.0060 1.0950 )’
. _ 29185 0.0074 i _ 1.3328 —0.0144 v 362.7104  3.6002
*71 00074 29413 )0 757\ -0.0144 13244 0 767\ 3.6002 353.4019 |’

15.9662 -0.3751 17.8032 —0.4754 45940 -0.1211

N ‘( ~0.3751 15.5536 ) S ‘( ~0.4754 17.9828 ) s ‘( —0.1211 4.3925 )

10.5927 —0.1858 9.8368 —0.2625 1.6559 —0.0148

’/V“‘( ~0.1858 10.7247 ) J’é‘( —-0.0625 9.6927 ) ’/‘/6‘( -0.0148 1.5761 )
e 14.2600 —0.3720 e 18.5753 -0.3917 o - 1.7252 0.1201
T\ —0.3720 14.2429 )’ 871 —0.3917 185580 )0 "'\ 0.0120 2.1247 )’

o _ [ 111020 -0.0023 o [ 15381 —0.0077 o [ 21049 ~0.0206
271 —=0.0023 1.1232 ) 7?7\ -0.0077 15649 |° 747\ —0.0206 1.5649 |

g - 9.2451 —0.0344 2 - 24181 0.4222 2 — 1.3451 0.3942
571 —0.0344 92441 )’ P71 04222 29580 /"2 7\ 03942 1.6548 |

Example 4.3. Consider the complex dynamical networks (4.1) consisting of 8 nodes and each node as
a 3-dimensional subsystem, and the known parameters are given as follows:

-2 0 1 1 0 0 0 O
0o 31 1 0 1 0 O
1 2 -3 0 0 O O 1
-1 0 O
1 1.0 -4 1 0 0 1
o 1. 0 O 0 -2 0 1
o 0o 0 O 1 0 =21
o o 1 1 O 1 1 -4
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008 0 0 01 0 O 05 0 O
;= 0 008 O |, O=( 0 01 0 |, 3= 0 05 O
0 0 0.08 0 0 0.1 0 0 05

The nonlinear function is considered as follows:

tanh(0.1%¢;1 (1))
G (pi(1)) = | tanh(0.15%pp(1))
tanh(0.2%pp(1))

The parameters and threshold values can be set as follows: ¢ = 0.2, 8 =0.01, p1 = pr =p3 =p4 =
Ps =pe=p7=ps =2, and vy = vy = U3 = Uy = Us = Vg = U7 = Ug = 2. Additionally, u; = 0.03,
= 0.06, us = 0.02, uy = 0.02, us = 0.1, and the upper bound a = 1.5. Using the same control
parameters from Example 3.1, it can be verified through the Matlab toolbox that inequality (3.1) in
Theorem 3.1 is satisfied. The results are shown in Figure 25.

Error response
o [4)]
Z
j @
3
if

Time

Error response
&h o
%‘ﬂ
\‘L

Time

2 s

Cgl . 'r‘\\" W

@» N — A

@ o 4 = —>

= At —, J T4

'6 N

1= L L L L

W "o 2 4 6 8 10
Time

Figure 25. Synchronization of ¢;;(¢), ¢2(?), ¢;3(¢) (Under PID controller), (1 < j < 8).

5. Conclusions

In this manuscript, we have presented a novel approach to achieving exponential synchronization
in CDNs with hybrid delays by combining PID control with a dynamic event-trigger mechanism. We
formulate a comprehensive mathematical model for the network and establish synchronization criteria
using LMI techniques. We have also demonstrated the stability of the system under the proposed
control approach using Lyapunov stability theory techniques. Our numerical simulations have shown
that the proposed approach is effective in achieving exponential synchronization in CDNs with hybrid
delays and that the use of PID control parameter values and a dynamic event trigger mechanism can
lead to significant improvements in the efficiency and robustness of the control strategy. Our results
have important implications for the development of more advanced and effective control strategies for
complex systems, particularly in the presence of delays and other sources of uncertainty. We hope that
our research will inspire further investigations into the use of PID control and dynamic event trigger
mechanisms in CDNs and contribute to the development of more efficient and robust control strategies
for complex systems in the future.

AIMS Mathematics Volume 8, Issue 12, 28976-29007.



29003

Use of Al tools declaration
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

M. Rhaima was supported by Researchers Supporting Project number (RSPD2023R683), King
Saud University, Riyadh, Saudi Arabia. The first author gratefully acknowledges that this work is
funded by the Centre for Nonlinear Systems, Chennai Institute of Technology (CIT), India, funding
number CIT/CNS/2023/RP-005.

Conflict of interest

The author declares that there is no conflict of interest regarding the publication of this paper.

References

1. Y. Yu, Z. Zhang, M. Zhong, Z. Wang, Pinning synchronization and adaptive synchronization of
complex-valued inertial neural networks with time-varying delays in fixed-time interval, J. Franklin
1., 359 (2022), 1434-1456. https://doi.org/10.1016/j.jfranklin.2021.11.036

2. H. Zhao, L. Li, H. Peng, J. Xiao, Y. Yang, M. Zheng, Impulsive control for synchronization and
parameters identification of uncertain multi-links complex network, Nonlinear Dyn., 83 (2016),
1437-1451. https://doi.org/10.1007/S11071-015-2416-3

3. W. Yu, G. Chen, J. Lii, On pinning synchronization of complex dynamical networks, Automatica,
45 (2009), 429-435. https://doi.org/10.1016/j.automatica.2008.07.016

4. H. L, J. A. Lu, J. Li, D. J. Hill, Structure identification of wuncertain general
complex dynamical networks with time delay, Automatica, 45 (2009), 1799-1807.
https://doi.org/10.1016/j.automatica.2009.03.022

5. H. Ren, F. Deng, Y. Peng, Finite time synchronization of markovian jumping stochastic complex
dynamical systems with mix delays via hybrid control strategy, Neurocomputing, 272 (2018), 683—
693. https://doi.org/10.1016/j.neucom.2017.08.013

6. Z.H.Guan,Z. W. Liu, G. Feng, Y. W. Wang, Synchronization of complex dynamical networks with
time-varying delays via impulsive distributed control, IEEE T. Circuits-I, 57 (2010), 2182-2195.
https://doi.org/10.1109/TCS1.2009.2037848

7. L. Xiao, B. Liao, S. Li, Z. Zhang, L. Ding, L. Jin, Design and analysis of ftznn applied to the
real-time solution of a nonstationary lyapunov equation and tracking control of a wheeled mobile
manipulator, IEEE T. Ind. Inform., 14 (2018), 98-105. https://doi.org/10.1109/T11.2017.2717020

8. L. Xiao,J. Dai, L. Jin, W. Li, S. Li, J. Hou, A noise-enduring and finite-time zeroing neural network
for equality-constrained time-varying nonlinear optimization, IEEE T. Syst. Man Cy.-S., 51 (2021),
4729-4740. https://doi.org/10.1109/TSMC.2019.2944152

9. J. Zhou, D. Xu, W. Tai, C. K. Ahn, Switched event-triggered H, security control for networked
systems vulnerable to aperiodic dos attacks, IEEE T. Netw. Sci. Eng., 10 (2023), 2109-2123.
https://doi.org/10.1109/TNSE.2023.3243095

AIMS Mathematics Volume 8, Issue 12, 28976-29007.


http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2021.11.036
http://dx.doi.org/https://doi.org/10.1007/S11071-015-2416-3
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2008.07.016
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2009.03.022
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2017.08.013
http://dx.doi.org/https://doi.org/10.1109/TCSI.2009.2037848
http://dx.doi.org/https://doi.org/10.1109/TII.2017.2717020
http://dx.doi.org/https://doi.org/10.1109/TSMC.2019.2944152
http://dx.doi.org/https://doi.org/10.1109/TNSE.2023.3243095

29004

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

J. L. Wang, P. C. Wei, H. N. Wu, T. Huang, M. Xu, Pinning synchronization of complex
dynamical networks with multiweights, IEEE T. Syst. Man Cy.-S., 49 (2019), 1357-1370.
https://doi.org/10.1109/TSMC.2017.2754466

Q. Li, B. Shen, Z. Wang, T. Huang, J. Luo, Synchronization control for a class of discrete time-
delay complex dynamical networks: A dynamic event-triggered approach, IEEE T. Cybernetics,
49 (2019), 1979-1986. https://doi.org/10.1109/TCYB.2018.2818941

X. Yang, J. Lam, D. W. C. Ho, Z. Feng, Fixed-time synchronization of complex networks with
impulsive effects via nonchattering control, IEEE T. Automat. Contr., 62 (2017), 5511-5521.
https://doi.org/10.1109/TAC.2017.2691303

H. Shen, X. Hu, X. Wu, S. He, J. Wang, Generalized dissipative state estimation of singularly
perturbed switched complex dynamic networks with persistent dwell-time mechanism, /IEEE T.
Syst. Man Cy.-S., 52 (2020), 1795-1806. https://doi.org/10.1109/TSMC.2020.3034635

M. S. Raunak, L. J. Osterweil, Resource management for complex, dynamic environments, /[EEE
T. Software Eng., 39 (2012), 384—402. https://doi.org/10.1109/TSE.2012.31

L. Wang, H. P. Dai, H. Dong, Y. Y. Cao, Y. X. Sun, Adaptive synchronization of
weighted complex dynamical networks through pinning, Eur. Phys. J. B, 61 (2008), 335-342.
https://doi.org/10.1140/epjb/e2008-00081-5

J. Yogambigai, M. S. Ali, H. Alsulami, M. S. Alhodaly, Impulsive and pinning control
synchronization of markovian jumping complex dynamical networks with hybrid coupling
and additive interval time-varying delays, Commun. Nonlinear Sci., 85 (2020), 105215.
https://doi.org/10.1016/j.cnsns.2020.105215

M. S. Anwar, S. Kundu, D. Ghosh, Enhancing synchrony in asymmetrically weighted multiplex
networks, Chaos Soliton. Fract., 142 (2021), 110476. https://doi.org/10.1016/j.chaos.2020.110476

M. S. Anwar, D. Ghosh, N. Frolov, Relay synchronization in a weighted triplex network,
Mathematics, 9 (2021), 2135. https://doi.org/10.3390/math9172135

L. V. Gambuzza, M. Frasca, E. Estrada, Hubs-attracting laplacian and related synchronization on
networks, SIAM J. Appl. Dyn. Syst., 19 (2020), 1057-1079. https://doi.org/10.1137/19M 1287663

Y. A. Liu, J. Xia, B. Meng, X. Song, H. Shen, Extended dissipative synchronization for semi-
markov jump complex dynamic networks via memory sampled-data control scheme, J. Franklin I.,
357 (2020), 10900-10920. https://doi.org/10.1016/j.jfranklin.2020.08.023

Y. Wang, S. Ding, R. Li, Master-slave synchronization of neural networks
via event-triggered dynamic controller, Neurocomputing, 419 (2021), 215-223.
https://doi.org/10.1016/j.neucom.2020.08.062

Q. Jia, E. S. Mwanandiye, W. K. Tang, Master-slave synchronization of delayed neural
networks with time-varying control, IEEE T. Neur. Net. Lear, 32 (2021), 2292-2298.
https://doi.org/10.1109/TNNLS.2020.2996224

C. Hu, H. He, H. Jiang, Fixed/preassigned-time synchronization of complex networks
via improving fixed-time stability, [EEE T. Cybernetics, 51 (2021), 2882-2892.
https://doi.org/10.1109/TCYB.2020.2977934

AIMS Mathematics Volume 8, Issue 12, 28976-29007.


http://dx.doi.org/https://doi.org/10.1109/TSMC.2017.2754466
http://dx.doi.org/https://doi.org/10.1109/TCYB.2018.2818941
http://dx.doi.org/https://doi.org/10.1109/TAC.2017.2691303
http://dx.doi.org/https://doi.org/10.1109/TSMC.2020.3034635
http://dx.doi.org/https://doi.org/10.1109/TSE.2012.31
http://dx.doi.org/https://doi.org/10.1140/epjb/e2008-00081-5
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2020.105215
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110476
http://dx.doi.org/https://doi.org/10.3390/math9172135
http://dx.doi.org/https://doi.org/10.1137/19M1287663
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2020.08.023
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2020.08.062
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2020.2996224
http://dx.doi.org/https://doi.org/10.1109/TCYB.2020.2977934

29005

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

.J. Zhang, J. Sun, Exponential synchronization of complex networks with continuous
dynamics and boolean mechanism,  Neurocomputing, 307 (2018), 146-152.
https://doi.org/10.1016/j.neucom.2018.03.061

A. Z. Dragicevic, A. Gurtoo, Stochastic control of ecological networks, J. Math. Biol., 85 (2022),
7. https://doi.org/10.1007/s00285-022-01777-5

J. L. Wang, H. N. Wu, T. Huang, S. Y. Ren, Analysis and pinning control for output synchronization
and A, output synchronization of multi-weighted complex networks, In: Analysis and control of
output synchronization for complex dynamical networks, Singapore: Springer, 2019, 175-205.
https://doi.org/10.1007/978-981-13-1352-3 9

D. Wang, W. W. Che, H. Yu, J. Y. Li, Adaptive pinning synchronization of complex networks with
negative weights and its application in traffic road network, Int. J. Control Autom. Syst., 16 (2018),
782-790. https://doi.org/10.1007/s12555-017-0161-8

E. Kyriakakis, J. Sparsg, P. Puschner, M. Schoeberl, Synchronizing real-time tasks in time-
triggered networks, In: 2021 IEEE 24th international symposium on real-time distributed
computing (ISORC), 2021, 11-19. https://doi.org/10.1109/ISORC52013.2021.00013

T. Hu, Z. He, X. Zhang, S. Zhong, K. Shi, Y. Zhang, Adaptive fuzzy control
for quasi-synchronization of uncertain complex dynamical networks with time-varying

topology via event-triggered communication strategy, Inform. Sci., 582 (2022), 704-724.
https://doi.org/10.1016/j.ins.2021.10.036

K. Kriiger, G. Fohler, M. Volp, P. Esteves-Verissimo, Improving security for time-triggered
real-time systems with task replication, In: 2018 IEEE 24th international conference on
embedded and real-time computing systems and applications (RTCSA), 2018, 232-233.
https://doi.org/10.1109/RTCSA.2018.00036

Q. Wang, B. Fu, C. Lin, P. Li, Exponential synchronization of chaotic lur’e systems
with time-triggered intermittent control, Commun. Nonlinear Sci., 109 (2022), 106298.
https://doi.org/10.1016/j.cnsns.2022.106298

S. Ding, Z. Wang, Event-triggered synchronization of discrete-time neural networks: A switching
approach, Neural Networks, 125 (2020), 31-40. https://doi.org/10.1016/j.neunet.2020.01.024

Y. Li, F. Song, J. Liu, X. Xie, E. Tian, Decentralized event-triggered synchronization control for
complex networks with nonperiodic dos attacks, Int. J. Robust Nonlin., 32 (2022), 1633-1653.
https://doi.org/10.1002/rnc.5899

R. Pan, Y. Tan, D. Du, S. Fei, Adaptive event-triggered synchronization control for
complex networks with quantization and cyber-attacks, Neurocomputing, 382 (2020), 249-258.
https://doi.org/10.1016/j.neucom.2019.11.096

W. Xing, P. Shi, R. K. Agarwal, L. Li, Robust H,, pinning synchronization for complex networks
with event-triggered communication scheme, IEEE T. Circuits Syst.-I, 67 (2020), 5233-5245.
https://doi.org/10.1109/TCS1.2020.3004170

B. Li, Z. Wang, L. Ma, An event-triggered pinning control approach to synchronization of discrete-
time stochastic complex dynamical networks, IEEE T. Neur. Net. Lear., 29 (2018), 5812-5822.
https://doi.org/10.1109/TNNLS.2018.2812098

AIMS Mathematics Volume 8, Issue 12, 28976-29007.


http://dx.doi.org/https://doi.org/10.1016/j.neucom.2018.03.061
http://dx.doi.org/https://doi.org/10.1007/s00285-022-01777-5
http://dx.doi.org/https://doi.org/10.1007/978-981-13-1352-3_9
http://dx.doi.org/https://doi.org/10.1007/s12555-017-0161-8
http://dx.doi.org/https://doi.org/10.1109/ISORC52013.2021.00013
http://dx.doi.org/https://doi.org/10.1016/j.ins.2021.10.036
http://dx.doi.org/https://doi.org/10.1109/RTCSA.2018.00036
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2022.106298
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2020.01.024
http://dx.doi.org/https://doi.org/10.1002/rnc.5899
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2019.11.096
http://dx.doi.org/https://doi.org/10.1109/TCSI.2020.3004170
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2018.2812098

29006

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Y. Luo, Y. Yao, Z. Cheng, X. Xiao, H. Liu, Event-triggered control for coupled reaction—diffusion
complex network systems with finite-time synchronization, Physica A, 562 (2021), 125219.
https://doi.org/10.1016/j.physa.2020.125219

X. Lv, J. Cao, X. Li, M. Abdel-Aty, U. A. Al-Juboori, Synchronization analysis for complex
dynamical networks with coupling delay via event-triggered delayed impulsive control, /IEEE T.
Cybernetics, 51 (2021), 5269-5278. https://doi.org/10.1109/TCYB.2020.2974315

C. X. Shi, G. H. Yang, X. J. Li, Event-triggered output feedback synchronization
control of complex dynamical networks, Neurocomputing, 275 (2018), 29-39.
https://doi.org/10.1016/j.neucom.2017.05.014

X. Li, H. Wu, J. Cao, A new prescribed-time stability theorem for impulsive piecewise-smooth
systems and its application to synchronization in networks, Appl. Math. Model., 115 (2023), 385—
397. https://doi.org/10.1016/j.apm.2022.10.051

X. Li, H. Wu, J. Cao, Prescribed-time synchronization in networks of piecewise smooth systems
via a nonlinear dynamic event-triggered control strategy, Math. Comput. Simulat., 203 (2023),
647-668. https://doi.org/10.1016/j.matcom.2022.07.010

B. Zhou, X. Liao, T. Huang, G. Chen, Pinning exponential synchronization of complex networks
via event-triggered communication with combinational measurements, Neurocomputing, 157
(2015), 199-207. https://doi.org/10.1016/j.neucom.2015.01.018

D. Liuy, G. H. Yang, Event-triggered synchronization control for complex
networks  with actuator saturation, Neurocomputing, 275 (2018), 2209-2216.
https://doi.org/10.1016/j.neucom.2017.10.054

J. Liu, H. Wu, J. Cao, Event-triggered synchronization in fixed time for semi-markov switching

dynamical complex networks with multiple weights and discontinuous nonlinearity, Commun.
Nonlinear Sci., 90 (2020), 105400. https://doi.org/10.1016/j.cnsns.2020.105400

X. Song, R. Zhang, C. K. Ahn, S. Song, Dissipative synchronization of semi-markov jump
complex dynamical networks via adaptive event-triggered sampling control scheme, IEEE Syst.
J., 16 (2022), 4653-4663. https://doi.org/10.1109/JSYST.2021.3124082

Q. Dong, P. Yu, Y. Ma, Event-triggered synchronization control of complex
networks with adaptive coupling strength, J. Franklin I., 359 (2022), 1215-1234.
https://doi.org/10.1016/j.jfranklin.2021.11.007

H. Lu, Y. Hu, C. Guo, W. Zhou, Cluster synchronization for a class of complex dynamical network
system with randomly occurring coupling delays via an improved event-triggered pinning control
approach, J. Franklin I., 357 (2020), 2167-2184. https://doi.org/10.1016/j.jfranklin.2019.11.076
S. Wang, Y. Cao, T. Huang, Y. Chen, S. Wen, Event-triggered distributed control for
synchronization of multiple memristive neural networks under cyber-physical attacks, Inform. Sci.,
518 (2020), 361-375. https://doi.org/10.1016/j.ins.2020.01.022

W. Wu, L. He, J. Zhou, Z. Xuan, S. Arik, Disturbance-term-based switching event-triggered

synchronization control of chaotic lurie systems subject to a joint performance guarantee, Commun.
Nonlinear Sci., 115 (2022), 106774. https://doi.org/10.1016/j.cnsns.2022.106774

AIMS Mathematics Volume 8, Issue 12, 28976-29007.


http://dx.doi.org/https://doi.org/10.1016/j.physa.2020.125219
http://dx.doi.org/https://doi.org/10.1109/TCYB.2020.2974315
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2017.05.014
http://dx.doi.org/https://doi.org/10.1016/j.apm.2022.10.051
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2022.07.010
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2015.01.018
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2017.10.054
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2020.105400
http://dx.doi.org/https://doi.org/10.1109/JSYST.2021.3124082
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2021.11.007
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2019.11.076
http://dx.doi.org/https://doi.org/10.1016/j.ins.2020.01.022
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2022.106774

29007

50

51.
52.
53.
54.
55.

56.
57.

38.

@él\zg AIMS Press

. Y. Ni, Z. Wang, Y. Fan, X. Huang, H. Shen, Memory-based event-triggered control for global
synchronization of chaotic lur’e systems and its application, /EEE T. Syst. Man Cy.-S., 53 (2023),
1920-1931. https://doi.org/10.1109/TSMC.2022.3207353

H. Zhang, J. Liu, Event-triggered fuzzy flight control of a two-degree-of-
freedom helicopter system, IEEE T. Fuzzy Syst., 29 (2021), 2949-2962.
https://doi.org/10.1109/TFUZZ.2020.3009755

P. Liu, H. Gu, Y. Kang, J. Lii, Global synchronization under PI/PD controllers
in general complex networks with time-delay, Neurocomputing, 366 (2019), 12-22.
https://doi.org/10.1016/j.neucom.2019.07.028

H. Gu, P. Liu, J. Li, Z. Lin, PID control for synchronization of complex dynamical
networks with directed topologies, [EEE T. Cybernetics, 51 (2021), 1334-1346.
https://doi.org/10.1109/tcyb.2019.2902810

S. Aadhithiyan, R. Raja, Q. Zhu, J. Alzabut, M. Niezabitowski, C. P. Lim, Exponential
synchronization of nonlinear multi-weighted complex dynamic networks with hybrid time varying
delays, Neural Process. Lett., 53 (2021), 1035-1063. https://doi.org/10.1007/s11063-021-10428-7

J. Suo, M. Shi, Y. Li, Y. Yang, Proportional-integral control for synchronization of complex
dynamical networks under dynamic event-triggered mechanism, J. Franklin I., 360 (2023), 1436—
1453. https://doi.org/10.1016/j.jfranklin.2022.09.048

S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control
theory, SIAM, 1994.

H. Liu, T. Wang, Exponential synchronization of complex dynamical networks via a novel
sampled-data control, Complexity, 2022 (2022), 2786011. https://doi.org/10.1155/2022/2786011

Y. He, M. Wu, J. H. She, Delay-dependent exponential stability of delayed
neural networks with time-varying delay, [EEE T. Circuits-1I, 53 (2006), 553-557.
https://doi.org/10.1109/TCSII.2006.876385

©2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 12, 28976-29007.


http://dx.doi.org/https://doi.org/10.1109/TSMC.2022.3207353
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2020.3009755
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2019.07.028
http://dx.doi.org/https://doi.org/10.1109/tcyb.2019.2902810
http://dx.doi.org/https://doi.org/10.1007/s11063-021-10428-7
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2022.09.048
http://dx.doi.org/https://doi.org/10.1155/2022/2786011
http://dx.doi.org/https://doi.org/10.1109/TCSII.2006.876385
http://creativecommons.org/licenses/by/4.0

	Introduction
	Problem formulation
	Main results
	Complex dynamical networks with coupling parameter uncertainties using PID controller

	Numerical examples
	Conclusions

