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Abstract: The aim of this paper is to define the generalized discrete proportional derivative (GDPD)
and illustrate the application of the Leibniz theorem, the binomial expansion, and Montmort’s
formulas in the context of the generalized discrete proportional case. Furthermore, we introduce the
generalized discrete proportional Laplace transform and determine the GDPLT of various functions
using the inverse operator. The results obtained are showcased through relevant examples and
validated using MATLAB.

Keywords: fractional difference operator; exact solution; generalized polynomial factorial; generalized
discrete proportional Laplace transform; numerical solution

1. Introduction

Undoubtedly, mathematics holds immense value across various disciplines, including
physics, economics, and engineering [1–8]. The concept of a difference equation becomes
essential when describing the evolution of a phenomenon over time. In the works of [9,10],
the discrete case of the differential operator ∆ is precisely defined as

∆ f (k) = f (k+ 1)− f (k), k ∈ N = {0, 1, 2, 3, · · · }.

The discrete cases of derivatives (both real and complex order) and integrals can be
defined using discrete fractional calculus, extending the principles of (integer-order) differ-
ential calculus [11–13]. Specifically, fractional derivatives in this context are synonymous
with Riemann–Liouville fractional derivatives (RLFDs), and their definitions have been
explored in various ways in [14–17].

Likewise, discrete fractional derivatives can be defined through various approaches.
In the realm of difference calculus, particularly fractional difference calculus [10,18,19], one
encounters the forward h-difference operator ∆h, which is defined as

h∆h f (x) = f (x+ h)− f (x), x ∈ [0, ∞), h ∈ (0, ∞).

In 1989, Miller and Ross introduced the discrete counterpart of the RLFD, elucidating
numerous characteristics of the fractional difference operator [11,20]. This work not only
involved proposing the discrete analogue but also encompassed the definition of vari-
ous generalized difference operators. We further extended our contributions by deriving
exact solutions and presenting numerical solutions for a variety of functions [21–23]. No-
tably, we introduced the discrete variant of the generalized proportional derivative, known
as the generalized proportional delta operator.
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In the study presented in [24], the authors investigated lower regularized incomplete
gamma functions, showcasing their utility in demonstrating the existence and uniqueness
of solutions for fractional differential equations involving nonlocal fractional derivatives.
Exploring a new frontier, [25] delves into the realm of solutions for a distinct category
of nonlinear generalized proportional fractional differential inclusions. This exploration
encompasses scenarios where the right-hand side incorporates a Caratheodory-type multi-
valued nonlinearity, extending the analysis to infinite intervals. Furthermore, [26] intro-
duces a comprehensive two-step design approach aimed at implementing a fractional-order
proportional integral controller tailored for a specific class of fractional-order plant models.
Motivated by the preceding discussions and incentives, the principal objective of this paper
is to delve into the concept of the GDPD. This investigation involves demonstrating the
practical applicability of Leibniz’s theorem, binomial expansion, and Montmort’s formulas
within the generalized discrete proportional setting.

Expanding on prior research, we have extended the discrete form of the generalized
proportional differential operator. Its inverse has been skillfully employed to derive fun-
damental formulas, enabling the computation of closed-form solutions and numerical
solutions for distinct categories of finite and infinite series within the domain of number
theory. Remarkably, the application of this operator to advance the theoretical foundations
of the discrete version remains unparalleled in the existing literature.

A clear distinction often arises between numerical solutions and closed-form solutions
in prevalent methodologies. Discrepancies emerge, necessitating the individual determina-
tion of the error factor. Remarkably, when utilizing the generalized proportional difference
operator and its inverse, the need for a separate determination of the error factor is obviated.
The equivalence between numerical solutions and closed form solutions is consistently
observed in our methodologies.

In this article, the generalized proportional delta operator ∆−µ
` has been proposed.

Section 2 studies the generalized discrete proportional case of the Leibnitz theorem, bi-
nomial expansion, and Montmort’s formulas by defining the generalized proportional
difference operator. In Section 3, we establish the inverse generalized proportional delta
operator and derives exact and numerical solutions of various functions. In Section 4, we
discuss the applications in various types of arithmetic progression (AP) of finite series
involving the operator ∆−µ

` . In Section 5, we define the generalized proportional discrete
Laplace transform (GDPLT) and obtain the GDPLT of various functions. To demonstrate our
findings, appropriate examples are supplied and confirmed using MATLAB in Section 6.
Finally, the conclusion of this paper is given in Section 7.

2. Basic Definitions and Results

Prior to presenting and proving our results, we lay the foundation by introducing
essential definitions and lemmas. This section unveils fundamental concepts and provides
preliminary results that will prove crucial in our subsequent discussions.

Definition 1 ([27]). A Conformable Differential Operator is defined by

Dα f (t) = α f ′(t) + (1− α) f (t), α ∈ [0, 1], (1)

which represents the α-derivative of f (t). Here, Dα is conformable provided the function f (t) is
differentiable at t and f ′(t) = d

dt f (t).

Definition 2 ([23]). Let f (t) be real- or complex-valued function on [0, ∞). Then, the forward
(α, β)-difference operator ∆(α,β)(`) on f (t) is defined by

`∆(α,β)(`) f (t) = β f (t + `)− α f (t), ` ∈ (0, ∞). (2)

Remark 1 ([19,23]). When α = 1 and β = 1, the difference operator ∆(1,1)(`) becomes the
generalized difference operator `∆`, defined as `∆` f (t) = f (t + `)− f (t).
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Definition 3. By Definition 1, the generalized proportional delta operator for the function w(t) :
[0, ∞)→ C, ` > 0 is defined by

∆µ
` w(t) = µ∆`w(t) + (1− µ)w(t), µ ∈ [0, 1]. (3)

Lemma 1. If L`w(t) = w(t + `) is the usual lead operator, then

L` =
1
µ
(∆µ

` + 2µ− 1) = (1 + ∆)` = (1 + ∆`). (4)

Proof. From the usual lead operator L`, we write

L`w(t) = w(t + `) = w(t + `)− w(t) + w(t) = (1 + ∆`)w(t). (5)

When ` = 1, (5) becomes L = ∆ + 1. Then, from (3) and (5), we obtain

(1 + ∆`)w(t) = L`w(t) = (1 + ∆)`w(t). (6)

L`w(t) =
1
µ
(∆µ

` + 2µ− 1)w(t). (7)

By comparing Equations (6) and (7), we complete the proof.

Lemma 2. If a, b are constants and w1(t), w2(t) are any real- or complex-valued functions on
t ∈ [0, ∞), then

(i) ∆µ
` [aw1(t) + bw2(t)] = a∆µ

` w1(t) + b∆µ
` w2(t);

(ii) ∆µ1
` ∆µ2

` w(t) = ∆µ2
` ∆µ1

` w(t) = ∆µ1+µ2
` w(t);

(iii) ∆µ
` [w1(t)w2(t)] = ∆µ

` w2(t)L`w1(t) + (2µ− 1)w2(t)∆`w1(t);

(iv) ∆µ
`

(
w1(t)
w2(t)

)
=

w2(t)∆
µ
` w1(t)− (2µ− 1)w1(t)∆`w2(t)

w2(t)L`w2(t)
.

Proof. The proof follows by Definition 3.

Definition 4. By Definition 3, the second order of ∆µ
` is defined as ∆2µ

` = ∆µ
` ∆µ

` and, in general,

the nth order of ∆µ
` is defined as ∆nµ

` = ∆(n−1)µ
` (∆µ

` ).

The following are easy deductions.

(i) For the positive integers p, q and µ ∈ [0, 1], ∆pµ
` ∆qµ

` = ∆qµ
` ∆pµ

` ;

(ii) For µ ∈ [0, 1] and w : [0, ∞)→ C ∆nµ
` (cw(t)) = c∆nµ

` w(t);

(iii) L`∆µ
` w(t) = ∆µ

` L`w(t);

(iv) For the function w : [0, ∞)→ C,

∆rµ
` =

r

∑
i=0

(1− 2µ)irCi(µL)`(r−i) (8)

and hence, ∆rµ
` w(t) =

r
∑

i=0
(1− 2µ)irCiµ

r−iw(t + (r− i)`);

(v) ∆µ
n` = µLn` + (1− 2µ);
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(vi) ∆µ
n` =

1
µn−1 [∆

µ
` + (2µ− 1)]n + (1− 2µ);

(vii) ∆µ
n` =

1
µn−1

r
∑

k=0
rCk∆(r−k)µ

` (2µ− 1)k + (1− 2µ).

The following theorem presents the generalized discrete proportional case of Leibniz’s theorem.

Theorem 1. Let w(t) and z(t), t ∈ [0, ∞), be any two functions. Then,

∆nµ
` [w(t)z(t)] =

n
∑

r=0
nCr

(
2− 1

µ

)n−r r
∑

i=0

( 2µ2−3µ+1
µ

)irCi×

∆(r−i)µ
` w(t)∆(n−r)µ

` z(t + (r− i)`), µ ∈ [0, 1].

Proof. Define the operators L`
1, L`

2, (∆nµ
` )1, (∆nµ

` )1 and hence L` as

L`
1w(t)z(t) = w(t + `)z(t), L`

2w(t)z(t) = w(t)z(t + `), (9)

(∆nµ
` )1 = µL`

1 + (1− 2µ), (∆nµ
` )2 = µL`

2 + (1− 2µ), L` = L`
1L`

2. (10)

From (4) and (10), we have ∆µ
` = µL` + 1− 2µ = µL`

1L`
2 + 1− 2µ = 2µ−1

µ (∆µ
` )2 +

(∆µ
` )1L`

2 + H, where H = 2µ2−3µ+1
µ .

From the above expression, we obtain

∆nµ
` (w(t)z(t)) =

[
(2− µ−1)(∆µ

` )2 + (∆µ
` )1L`

2 + H
]n

w(t)z(t). (11)

The results follow from the binomial theorem, (9)–(11).

Next, we establish the generalized discrete proportional form of the binomial expansion.

Theorem 2. For n, m ∈ Z+, the generalized discrete proportional case of the binomial expansion is
given by

(t + n`)m =
n

∑
p=0

nCp
1

(2µ− 1)p

p

∑
q=0

pCqµp−q(1− 2µ)q[t + (p− q)`]m. (12)

Proof. From (4), we have L` = 1
µ (∆

µ
` + 2µ − 1). Furthermore, Ln` =

[
1
µ (∆

µ
` + 2µ − 1)

]n
.

This implies

Ln`w(t) =
[ 1

µ
(∆µ

` + 2µ− 1)
]n

w(t). (13)

The proof follows by taking w(t) = tm on (13) and using binomial theorem.

We now introduce the discrete case of Montmort’s generalized proportional formula.

Lemma 3. If the series
∞
∑

t=0
ck`tk` converges, then

∞

∑
t=0

ck`tk` = µ
∞

∑
t=0

xt`∆tµ
`

(µ− (2µ− 1)x`)t+1 c0. (14)

Proof. Using the lead operator L` = 1
µ (∆

µ
` + 2µ− 1), we can get

∞
∑

t=0
ct`xt` =

∞
∑

t=0
xt`Lt`c0 = {1− x`L`}−1c0 = {1− x` 1

µ (∆
µ
` + 2µ− 1)}−1c0.
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Now, the proof follows by using the binomial expansion.

3. Inverse of the Generalized Proportional Difference Operator

In this section, we establish the inverse of the generalized proportional difference
operator ∆−µ

` and present explicit formulas for partial sums involving higher powers of
the geometric arithmetic progression. Additionally, we illustrate the application of these
formulas through relevant examples, providing a comprehensive understanding of their
utility in practical scenarios.

Definition 5. By Definition 3, we define the inverse of the generalized proportional difference
operator represented as follows. If ∆µ

` z(t) = w(t), then

∆−µ
` w(t) = z(t)−

(
2− µ−1)[ t

`

]
z(j), (15)

where z(j) is constant and the nth order inverse generalized proportional difference operator repre-
sented by ∆−nµ

` is defined as

∆−nµ
` w(t) = ∆−(n−1)µ

` ∆−µ
` w(t).

Lemma 4. Let µ ∈ [0, 1), w(t)=1, j = t−
[ t
`

]
` and t ∈ [`, ∞). Then,

∆−µ
` (1) =

1
(1− µ)

[
1−

(
2− 1

µ

)[ t
`

]
j
]
=

1
µ

[
t
`

]
∑
k=1

(
2− 1

µ

)k−1. (16)

Proof. From (3) and (15), we get the proof.

Lemma 5. If µ ∈ [0, 1), ` is positive real and t ∈ [0, ∞), then

∆−µ
` w(t)|tj =

1
µ

[
t
`

]
∑
k=1

(
2− 1

µ

)k−1
w(t− k`). (17)

Proof. The proof is followed by (15) and the relation

∆µ
`

[
1
µ

[
t
`

]
∑

k=1

(
2− 1

µ

)k−1
w(t− k`)

]
+ cj = w(t).

The operator methods of summation on ∆−µ
` are as follows.

Theorem 3. Assume that P(t), t ≥ 2` is any function of t and λ 6= 1. Then, we obtain,

1
µ

[
t
`

]
∑
k=1

(
2− 1

µ

)k−1
L−`(λkPk) =

λt

(λ` − 1)(1− 2µ)

∞

∑
i=0

(−1)iλi`

(λ` − 1)i(1− 2µ)i P(t)
∣∣∣t
j
, (18)

where L−`(λkPk) = λt−k`P(t− k`).

Proof. For a function F(t), we find

∆µ
` λtF(t) = λt[µλ`L` + (1− 2µ)]F(t) = λtP(t), (19)

hence, we obtain
[µλ`L` + (1− 2µ)]−1P(t) = F(t). (20)
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From (19) and (15), we find

∆−µ
` λtP(t) = λtF(t)−

(
2− 1

µ

)[ t
`

]
λjF(j),

and hence by (20), we obtain

∆−µ
` λtP(t) = λt[µλ`L` + (1− 2µ)]−1P(t)−

(
2− 1

µ

)[ t
`

]
cj, (21)

where cj = λj[µλ`L` + (1− 2µ)]−1P(j). Equations (17) and (21), along with the binomial
theorem, are now used to support the proof.

4. Applications in Various Sorts of A.P. Finite Series Involving ∆
−µ
`

Utilizing ∆−µ
` as a tool, we derive expressions for the sums of both arithmetico-

geometric progressions and arithmetico-double geometric progressions in the realm of
number theory.

The following theorem presents the general formula for the summation of higher
powers in an arithmetico-geometric progression.

Theorem 4. Let t ∈ [`, ∞), ` ∈ [0, ∞), µ ∈ [0, 1) and j = t−
[ t
`

]
`. Then,

1
µ

[
t
`

]
∑
k=1

(
2− 1

µ

)k−1
(t− k`)m = Fn(t)−

(
2− 1

µ

)[ t
`

]
Fn(j), (22)

where Fn(t) =
tm

1− µ
+

m

∑
k=1

(−µ)k

(1− µ)k+1 ∆µ
` tm.

Proof. From (16), we have

∆−µ
` (1) = F0(t)−

(
2− 1

µ

)[ t
`

]
F0(j), (23)

where F0(t) =
1

(1− µ)
. Since ∆µ

` t = (1− µ)t + µ`, (15) and (23) give

∆−µ
` t = F1(t)−

(
2− 1

µ

)[ t
`

]
F1(j), (24)

F1(t) =
t

(1− µ)2 −
µ`

(1− µ)2 . Since ∆µ
` t2 = (1− µ)t2 + 2µ`t + µ`2, ∆µ

` is linear, (15), (23)

and (24) yield

∆−µ
` t2 = F2(t)−

(
2− 1

µ

)[ t
`

]
F2(j), (25)

where F2(t) =
t2

(1− µ)
+

2
∑

k=1

(−µ)k

(1− µ)k+1 ∆k
`t2. Similarly,

∆µ
` t3 = (1− µ)t3 + 3µ`t2 + 3µ`2t + 2µ`3, (26)

and from (15) and (26), we find

∆−µ
` t3 = F3(t)−

(
2− 1

µ

)[ t
`

]
F3(j), (27)
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where F3(t) =
t3

(1− µ)
+

3
∑

k=1

(−µ)k

(1− µ)k+1 ∆µ
` t3. Now, proceeding with the same process for

∆−µ
` tm, we get the proof.

Theorem 5. Let t ∈ [`, ∞), ` ∈ [0, ∞), µ ∈ [0, 1) and j = t−
[ t
`

]
`. Then,

1
µ

[
t
`

]
∑
k=1

(
2− 1

µ

)k−1
(t− k`)(m)

` = Gn(t)−
(
2− 1

µ

)[ t
`

]
Gn(j), (28)

where Gn(t) =
t(m)

1− µ
+

m

∑
k=1

(−µ)k

(1− µ)k+1 ∆µ
` t(m).

Proof. From (24), we have

∆−µ
` t(1)` = G1(t)−

(
2− 1

µ

)[ t
`

]
G1(j), (29)

where G1(t) =
t(1)`

(1− µ)
− µ`

(1− µ)2 . Since ∆µ
` t(2)` = (1− µ)t(2)` + 2µ`t(1)` , ∆µ

` is linear, (15)

and (29) yield

∆−µ
` t(1)` = G2(t)−

(
2− 1

µ

)[ t
`

]
G2(j), (30)

where G2(t) =
t(2)`

(1− µ)
+

2
∑

k=1

(−µ)k

(1− µ)k+1 ∆µ
` t(1)` . Similarly, since

∆µ
` t(3)` = (1− µ)t(3)` + 3µ`t2 − µ`2t, (31)

from Definitions (15) and (31), we find

∆−µ
` t(3)` = G3(t)−

(
2− 1

µ

)[ t
`

]
G3(j), (32)

where G3(t) =
t(3)`

(1− µ)
+

3
∑

k=1

(−µ)k

(1− µ)k+1 ∆µ
` t(3)` . Now, proceeding with the same process for

∆−µ
` t(m)

` , we get the proof.

The following theorem provides the formula for the sum of an arithmetico-double
geometric progression.

Theorem 6. If t ∈ [`, ∞) and j = t−
[ t
`

]
, then

1
µ

[
t
`

]
∑
k=1

(
2− 1

µ

)k−1
(t− k`)mat−k` = Hm(t)−

(
2− 1

µ

)[ t
`

]
Hm(j), (33)

where

Hm(t) =
tmat

1− 2µ + µa`
+

m

∑
k=1

(−µ)k

(1− 2µ + µa`)k+1 ∆`(tm)Lm`(at).

Proof. ∆µ
` at = (1− 2µ + µa`)at, which yields from (15) that

∆−µ
` at =

at

1− 2µ + µa`
−
(
2− 1

µ

)[ t
`

]
aj

1− 2µ + µa`
. (34)
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∆µ
` tat = (1− 2µ + µa`)tat + µ`a`at, which yields from (15) that

∆−µ
` (tat) =

[ tat

1− 2µ + µa`
− µ`a`

(1− 2µ + µa`)2 at
]t

j
. (35)

∆µ
` t2at = (1− 2µ + µa`)t2at + 2µ`a`tat + µ`2a`at, which yields from (15) that

∆−µ
` (t2at) =

[ t2at

1− 2µ + µa`
+

2

∑
k=1

(−µ)k

(1− 2µ + µa`)3 ∆`(tm)L2`at
]t

j
. (36)

Now, we proceed with the same process for w(t) = tmat, and this completes the
proof.

Remark 2. The following Table 1 is a comparison of Theorem 3, Theorem 4, Theorem 5 and
Theorem 6.

Table 1. Comparison.

Functions Numerical Solution Exact Solution

1 1
µ

[
t
`

]
∑

k=1

(
2− 1

µ

)k−1 1
(1−µ)

[
1−

(
2− 1

µ

)[ t
`

]
j
]

t 1
µ

[
t
`

]
∑

k=1

(
2− 1

µ

)k−1
(t− k`)

F1(t)−
(
2− 1

µ

)[ t
`

]
F1(j), where

F1(t) =
t

(1− µ)2 −
µ`

(1− µ)2

tm
1
µ

[
t
`

]
∑

k=1

(
2− 1

µ

)k−1
(t− k`)m

Fn(t)−
(
2− 1

µ

)[ t
`

]
Fn(j), where

Fn(t) = tm

1−µ +
m
∑

k=1

(−µ)k

(1−µ)k+1 ∆µ
` tm

t(m)
1
µ

[
t
`

]
∑

k=1

(
2− 1

µ

)k−1
(t− k`)(m)

Gn(t)−
(
2− 1

µ

)[ t
`

]
Gn(j), where

Gn(t) = t(m)

1−µ +
m
∑

k=1

(−µ)k

(1−µ)k+1 ∆µ
` t(m)

tmat
1
µ

[
t
`

]
∑

k=1

(
2− 1

µ

)k−1
(t− k`)mat−k`

Hm(t)−
(
2− 1

µ

)[ t
`

]
Hm(j), where

Hm(t) =
tmat

1− 2µ + µa`
+

m

∑
k=1

(−µ)k

(1− 2µ + µa`)k+1 ∆`(t
m)Lm`(at).

λkPk
1
µ

[
t
`

]
∑

k=1

(
2− 1

µ

)k−1
L−`(λkPk)

λt

(λ`−1)(1−2µ)

∞
∑

i=0

(−1)iλi`

(λ`−1)i(1−2µ)i P(t)
∣∣∣t
j

Remark 3. Researchers can analyze discrete generalized proportional differences and inverse
differences across various functions. Readers may apply this operator in Newton’s law of cooling to
reduce errors.

5. Applications of the Generalized Discrete Proportional Laplace Transform Using ∆
−µ
`

Within this section, we delve into the application of ∆−µ
` to determine the GDPLT.

The subsequent definition elucidates the GDPLT.

Definition 6. By Definition 3, let w(t) be a function of t defined for t ≥ 0 and let ` ∈ [0, 1].
Then, the generalized discrete proportional Laplace transform is defined by

Lµ{w(t)} = µ`∆−µ
` e−stw(t)

∣∣∞
0 + (1− µ)∆−µ

` te−stw(t)
∣∣∞
0 , (37)
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= `
∞

∑
t=1

(2− µ−1)r−1T +
1− µ

µ

∞

∑
t=1

(2− µ−1)r−1(t− r`)T, (38)

where T = e−s(t−r`)w(t − r`), and Lµ{w(t)} = W(s) and L−1
µ {W(s)} = w(t) denote the

inverse of the generalized discrete proportional Laplace transform.

Lemma 6 (Numerical solution). Let w(t) be a function of t defined for t ∈ [0, ∞) and
lim
t→∞

∆−µ
` w(t) = 0. Then,

∆−µ
` w(t)

∣∣∞
t = −

∞

∑
k=1

µk−1

(2µ− 1)k w(t + k`). (39)

Proof. The proof follows from the relation

∆µ
`

[
−

∞
∑

k=1

µk−1

(2µ−1)k w(t + k`)
]
= w(t), w(j) = 0 as t→ ∞ and (3).

Lemma 7 (Exact solution). Let w(t) be a function of t ∈ (0, ∞), s > 0 and ` > 0. Then, the
generalized discrete proportional Laplace transform of w(t) is given by

Lµ{w(t)} = −
∞

∑
k=1

(2− µ−1)−k
[
`+

(1− µ)`

µ
k
]

e−sk`w(k`). (40)

Proof. The generalized discrete proportional Laplace transform of w(t) is

Lµ{w(t)} = µ`∆−µ
` e−sk`w(k`)|∞0 + (1− µ)∆−µ

` ke−sk`w(k`)|∞0

= `
∞

∑
k=1

(2− µ−1)−ke−s(t+k`)w(t + k`)|∞0

+
1− µ

µ

∞

∑
k=1

(2− µ−1)−k(t + e`)e−s(t+k`)w(t + k`)|∞0

Hence,

Lµ{w(t)} = −
∞

∑
k=1

(2− µ−1)−k
[
`+

(1− µ)`

µ
k
]

e−sk`w(k`). (41)

The proof is complete.

The following Proposition 1 establishes the equivalence between the numerical solu-
tion and the exact solution of the generalized discrete proportional Laplace transform.

Proposition 1. Let w(t) be a function of t ∈ (0, ∞), s > 0 and ` > 0. Then, the numerical and
exact solutions of the generalized discrete proportional Laplace transform of w(t) are equal, which is
given by

∞

∑
k=1

µk−1

(2µ− 1)k w(t + k`) =
∞

∑
k=1

(2− µ−1)−k
[
`+

(1− µ)`

µ
k
]

e−sk`w(k`). (42)

Proof. Comparing (39) and (41), we get the proof.

Lemma 8. Let t ∈ [`, ∞) and w(t) = e−st, t > 0. Then,

∆−µ
` (e−st)

∣∣t
j =

e−st

µe−s` − 2µ + 1

∣∣t
j. (43)
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Proof. The proof follows by (3) and (15).

Lemma 9. Let t ∈ [`, ∞) and w(t) = te−st, t > 0. Then,

∆−µ
` (te−st)

∣∣t
j =

te−st

µe−s` − 2µ + 1

∣∣t
j −

µ`e−s(t+`)

(µe−s` − 2µ + 1)2

∣∣t
j. (44)

Proof. Using (3), (15) and Lemma 8, the proof is complete.

Proposition 2. Let w(t) be a unit step function of t and ` > 0. Then, the generalized discrete
proportional Laplace transform of w(t) is given by

Lµ{w(t)} = −µ`

µe−s` − 2µ + 1
+ (1− µ)

µ`e−s`

(µe−s` − 2µ + 1)2 . (45)

Proof. Taking w(t) = 1, t > 0 in (37), we get

Lµ{1} = µ`∆−µ
` (e−st)

∣∣∞
0 + (1− µ)∆−µ

` (te−st)
∣∣∞
0 . (46)

Using (43) and (44) in (46), we get the proof.

Lemma 10. Let t ∈ [`, ∞) and w(t) = e−(s−a)t, t > 0. Then,

∆−µ
` (e−(s−a)t)

∣∣t
j =

e−(s−a)t

µe−(s−a)` − 2µ + 1

∣∣t
j. (47)

Proof. The proof follows by (3) and (15).

Lemma 11. Let t ∈ [`, ∞) and w(t) = te−(s−a)t, t > 0. Then,

∆−µ
` (te−(s−a)t)

∣∣t
j =

te−(s−a)t

µe−(s−a)` − 2µ + 1

∣∣t
j −

µ`e−(s−a)(t+`)

(µe−(s−a)` − 2µ + 1)2

∣∣t
j. (48)

Proof. Using (3), (15) and Lemma 8, the proof is complete.

Proposition 3. Let w(t) = eat be a function of t and ` > 0. Then, the generalized discrete
proportional Laplace transform of w(t) is given by

Lµ{w(t)} = −µ`

µe−(s−a)` − 2µ + 1
+ (1− µ)

µ`e−(s−a)`

(µe−(s−a)` − 2µ + 1)2
. (49)

Proof. Taking w(t) = eat, t > 0 in (37), we get

Lµ{eat} = µ`∆−µ
` (e−(s−a)t)

∣∣∞
0 + (1− µ)∆−µ

` (te−(s−a)t)
∣∣∞
0 . (50)

Using (47) and (48) in (50), we get the proof.

Lemma 12. Let t ∈ [`, ∞) and w(t) = e−(s+a)t, a, t > 0. Then,

∆−µ
` (e−(s+a)t)

∣∣t
j =

e−(s+a)t

µe−(s+a)` − 2µ + 1

∣∣t
j. (51)

Proof. The proof follows by (3) and (15).
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Lemma 13. Let t ∈ [`, ∞)and w(t) = te−(s+a)t, a, t > 0. Then,

∆−µ
` (te−(s+a)t)

∣∣t
j =

te−(s+a)t

µe−(s+a)` − 2µ + 1

∣∣t
j −

µ`e−(s+a)(t+`)

(µe−(s+a)` − 2µ + 1)2

∣∣t
j. (52)

Proof. Using (3), (15) and Lemma 8, the proof is complete.

Theorem 7. Let w(t) = e−at be a function of t and a, ` > 0. Then, the generalized discrete
proportional Laplace transform of w(t) is given by

Lµ{w(t)} = −µ`

µe−(s+a)` − 2µ + 1
+ (1− µ)

µ`e−(s+a)`

(µe−(s−a)` − 2µ + 1)2
. (53)

Proof. Taking w(t) = e−at, t > 0 in (37), we get

Lµ{e−at} = µ`∆−µ
` (e−(s+a)t)

∣∣∞
0 + (1− µ)∆−µ

` (te−(s−a)t)
∣∣∞
0 . (54)

Using (51) and (52) in (54), we get the proof.

Lemma 14. Let t ∈ [`, ∞) and w(t) = e−(s−ia)t, a, t > 0. Then,

∆−µ
` (e−(s−ia)t)

∣∣t
j =

e−(s−ia)t

µe−(s−ia)` − 2µ + 1

∣∣t
j. (55)

Proof. The proof follows by (3) and (15).

Lemma 15. Let t ∈ [`, ∞)and w(t) = te−(s−ia)t, a, t > 0. Then,

∆−µ
` (te−(s−ia)t)

∣∣t
j =

te−(s−ia)t

µe−(s−ia)` − 2µ + 1

∣∣t
j −

µ`e−(s−ia)(t+`)

(µe−(s−ia)` − 2µ + 1)2

∣∣t
j. (56)

Proof. Using (3), (15) and Lemma 8, the proof is complete.

Theorem 8. Let w(t) = eiat be a function of t and a, ` > 0. Then, the generalized discrete
proportional Laplace transform of w(t) is given by

Lµ{eiat} = −µ`

µe−(s−ia)` − 2µ + 1
+ (1− µ)

µ`e−(s−ia)`

(µe−(s−ia)` − 2µ + 1)2
. (57)

or

Lµ{cosat} = −µ`
µe−s`cosa`− 2µ + 1

(µe−s`cosa`− 2µ + 1)2 + (µe−s`sina`)2 + (1− µ)`

µ3e−3s`cosa`− 2µ2(2µ− 1)e−2s` + µ(2µ− 1)2e−s`cosa`
(A− 2µ(2µ− 1)e−s`cosa`+ (2µ + 1)2)2 + (B− 2µ(2µ− 1)e−s`sina`)2 , (58)

and

Lµ{sinat} = −µ`
µe−s`sina`

(µe−s`cosa`− 2µ + 1)2 + (µe−s`sina`)2 + (1− µ)`

µ3e−3s`sina`+ µ(2µ− 1)2e−s`sina`
(A− 2µ(2µ− 1)e−s`cosa`+ (2µ + 1)2)2 + (B− 2µ(2µ− 1)e−s`sina`)2 , (59)

where A = µ2e−2s`cosa` and B = µ2e−2s`sina`.
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Proof. Taking w(t) = eiat, t > 0 in (37), we get

Lµ{eiat} = µ`∆−µ
` (e−(s−ia)t)

∣∣∞
0 + (1− µ)∆−µ

` (te−(s−ia)t)
∣∣∞
0 . (60)

Using (55) and (56) in (60), we get (57), and equating the coefficients of real and
imaginary parts, we get (58) and (59).

Lemma 16. Let t ∈ [`, ∞) and w(t) = t2e−st, t > 0. Then,

∆−µ
` (t2e−st)

∣∣t
j =

t2e−st

µe−s` − 2µ + 1

∣∣t
j −

µ`e−s`

(µe−s` − 2µ + 1)2 (2t + µe−s` + 1)e−st∣∣t
j. (61)

Proof. Using (3), (15) and Lemma (8), the proof is complete.

Proposition 4. Let w(t) = t be a function of t and ` > 0. Then, the generalized discrete
proportional Laplace transform of w(t) is given by

Lµ{w(t)} = −µ2`2

(µe−s` − 2µ + 1)2 + (1− µ)
2µ2`2e−2s` + µ`2e−s`

(µe−s` − 2µ + 1)2 . (62)

Proof. Taking w(t) = t, t > 0 in (37), we get

Lµ{t} = µ`∆−µ
` (te−st)

∣∣∞
0 + (1− µ)∆−µ

` (t2e−st)
∣∣∞
0 . (63)

Using (43) and (61) in (63), we get the proof.

6. Numerical Examples

Within this section, we showcase examples and figures that demonstrate the applica-
tion of the GDPD and the generalized discrete proportional Laplace transform to various
functions.

Definition 3 is demonstrated using the following example.

Example 1. Let µ ∈ [0, 1] and n ∈ Z. The generalized proportional difference of a function as
follows:

(i) w(t) = t2 at µ = n
5 , 0 ≤ n ≤ 5, we have the following:

µ = 0, ` ∈ (0, ∞) : ∆0
` t2 = t2

µ = 1
5 , ` ∈ (0, ∞) : ∆

1
5
` t2 = (0.2)(2t`+ `2) + (0.8)t2

µ = 2
5 , ` ∈ (0, ∞) : ∆

2
5
` t2 = (0.4)(2t`+ `2) + (0.6)t2

µ = 3
5 , ` ∈ (0, ∞) : ∆

3
5
` t2 = (0.6)(2t`+ `2) + (0.4)t2

µ = 4
5 , ` ∈ (0, ∞) : ∆

4
5
` t2 = (0.8)(2t`+ `2) + (0.2)t2

µ = 1, ` ∈ (0, ∞) : ∆1
` t2 = (2t`+ `2).

(ii) w(t) = log(at) + eat, t 6= 0 and a = 0.5 at µ = n
5 , 0 ≤ n ≤ 5, we have the following:

µ = 0, ` ∈ (0, ∞) : ∆0
`(log(at) + eat) = eat

µ = 1
5 , ` ∈ (0, ∞) : ∆

1
5
` (log(at) + eat) = (0.2)log

( t+`
t
)
+ (0.6 + 0.2a`)eat

µ = 2
5 , ` ∈ (0, ∞) : ∆

2
5
` (log(at) + eat) = (0.4)log

( t+`
t
)
+ (0.2 + 0.4a`)eat

µ = 3
5 , ` ∈ (0, ∞) : ∆

3
5
` (log(at) + eat) = (0.6)log

( t+`
t
)
+ (−0.2 + 0.6a`)eat

µ = 4
5 , ` ∈ (0, ∞) : ∆

4
5
` (log(at) + eat) = (0.8)log

( t+`
t
)
+ (−0.6 + 0.8a`)eat

µ = 1, ` ∈ (0, ∞) : ∆1
`(log(at) + eat) = log

( t+`
t
)
+ (−1 + a`)eat.
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The following Figure 1a–d shows the graphical representation for the given fuction
w(t) = t2.
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Figure 1. Generalized proportional difference of w(t) = t2 for different shift values `.

In Figure 1, we visually depict the transformation of the generalized proportional
differences of t2 from t2 to 2t`+ `2 as µ increases from 0 to 1. Moreover, the graphical repre-
sentation in Figure 2 depicts the generalized proportional difference of w(t) = log(at) + eat

for various shift values `.
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Fractal Fract. 2023, 7, 838 14 of 18

The efficacy of Theorem 2 is demonstrated through the illustrative example presented
in Example 2.

Example 2. If θ is expressed in degrees with positive real values in an anticlockwise orientation, then

tan(t + nθ) =
n
∑

i=0
nCi

1
(2µ−1)i

i
∑

r=0
iCrµi−r(1− 2µ)rtan[t + (i− r)`].

The effectiveness of Theorem 4 is verified through the following illustrative Example 3.

Example 3. By taking ` = 3, µ = 0.2 and t = 7 in (16), we obtain
1

0.2

2
∑

k=1

(
2− 1

0.2

)k−1
=

1
(1− 0.2)

−
(

2− 1
0.2

)2 1
(1− 0.2)

= −10.

The effectiveness of Theorem 4 is verified through the following illustrative example.

Example 4. Using m = 2, t = 7, ` = 2 and µ = 0.6 in (22), we obtain

1
0.6

3

∑
k=1

(
2− 1

0.6
)k−1

(7− 2k)2 = F2(7)−
(
2− 1

0.6
)3F2(1) = 46.851851, (64)

where F2(7) = 47.5 and F2(1) = 17.5.

The effectiveness of Theorem 5 is verified through the following illustrative Example 5.

Example 5. Using m = 3, t = 13, ` = 3 and µ = 0.3 in (5), we get

1
0.3

4

∑
k=1

(
2− 1

0.3
)k−1

(13− 3k)(3) = G3(13)−
(
2− 1

0.3
)3G3(1) = 682.46914, (65)

where F2(7) = 749.79592 and F2(1) = 21.25781.

The effectiveness of Theorem 6 is verified through the following illustrative Example 6.

Example 6. Substituting m = 1, t = 7, ` = 2, a = 2 and µ = 0.1 in Theorem 6, we get

1
0.1

4

∑
k=1

(
2− 1

0.1
)k−1

(7− 2k)2(7−2k) = H1(7)−
(
2− 1

0.1
)3H1(1) = 960, (66)

where H1(7) = 675.55556 and H1(1) = 0.55556.

The following Figures 3–7 show the generalized discrete proportional Laplace trans-
form of a unit step function, the generalized discrete proportional Laplace transform of
eat, the generalized discrete proportional Laplace transform of e−at, the generalized dis-
crete proportional Laplace transform of cos(at), and the generalized discrete proportional
Laplace transform of sin(at).
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Figure 3. Generalized discrete proportional Laplace transform of the unit step function: (a) is the
input signal, (b–d) show the output signal with fixed ` (0.2, 0.5, and 1) and various µ.
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the output signal with fixed ` (0.2, 0.5, and 1) and various µ.
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the output signal with fixed ` (0.2, 0.5, and 1) and various µ.
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Figure 7. Generalized discrete proportional Laplace transform of sin(at): (a) is the input signal,
(b–d) shows the output signal with fixed ` (0.2, 0.5, and 1) and various µ.

7. Conclusions

This article explores the generalized discrete proportional case of Leibnitz’s theorem, bino-
mial expansion, and Montmort’s equations by establishing the difference operator. The authors
developed the inverse generalized proportional delta operator and obtained exact and numerical
solutions for diverse functions. We also addressed applications in various types of APs of finite
series involving the operator, and defined and obtained the GDPLT of various functions. We
provide and confirm MATLAB examples to demonstrate our findings. Similarly, one can find
the generalized discrete proportional Laplace transform of other functions. Readers (researchers)
can discover several applications in the fields of control systems and engineering, as well as
image processing. Our future studies will continue in this vein.
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