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Prioritized neural processing of social threats
during perceptual decision-making

M. El Zein,1,2,3,4,* R. Mennella,1,5 M. Sequestro,1 E. Meaux,1 V. Wyart,1,6,7 and J. Grèzes1,7,8,*

SUMMARY

Emotional signals, notably those signaling threat, benefit from prioritized processing in the human brain.
Yet, it remains unclear whether perceptual decisions about the emotional, threat-related aspects of stim-
uli involve specific or similar neural computations compared to decisions about their non-threatening/non-
emotional components. We developed a novel behavioral paradigm in which participants performed two
different detection tasks (emotion vs. color) on the same, two-dimensional visual stimuli. First, electroen-
cephalographic (EEG) activity in a cluster of central electrodes reflected the amount of perceptual evi-
dence around 100 ms following stimulus onset, when the decision concerned emotion, not color. Second,
participants’ choice could be predicted earlier for emotion (240 ms) than for color (380 ms) by the mu
(10 Hz) rhythm, which reflects motor preparation. Taken together, these findings indicate that perceptual
decisions about threat-signaling dimensions of facial displays are associatedwith prioritized neural coding
in action-related brain regions, supporting the motivational value of socially relevant signals.

INTRODUCTION

Accurate decoding of socially relevant information emitted by others, such as emotional expressions, is crucial to guide adaptive decisions.

Indeed, social signals are granted preferential processing: people quickly allocate attention to human faces and bodies in natural scenes,1

detect changes in faces better than in non-social objects,2 and respond faster to social than to non-social hazards.3 Emotional expressions,

especially when they signal threat, are further prioritized relative to neutral displays and to non-social stimuli.4–6 Social threat signals, such as

angry or fearful facial expressions, are associated with perceptual and attentional advantages6–11 and they also modify the perception of sur-

rounding environment.12–15 Moreover, they shape the observer’s behavior, by increasing motor preparation16–22 and by influencing

approach/avoidance decisions.23–27

Perceptual decisionsmade on non-socioemotional characteristics of stimuli show that stimulus evidence is encoded over associative, cen-

troparietal regions (CPP, gradual buildup starting from 170 ms after stimulus onset) and over motor regions (lateralized readiness potential -

LRP, gradual buildup from 320 ms, both CCP and LRP peak around 400-500 ms,28,29 see also30–36). Interestingly, recent experiments investi-

gating perceptual decisions on morphed emotional displays also revealed that the brain areas specialized in the processing of human faces

feed information forward to the dorsal stream where sensory evidence accumulates and to the premotor regions where decisions

emerge.37–40 Moreover, when directly comparing perceptual decision on high- and low-threat facial displays, El Zein et al.41 found that

high-threat displays elicited earlier (�200 ms) and enhanced stimulus neural encoding in both associative and motor regions simultaneously.

Despite the similarity in the neural dynamics underlying perceptual decisions on threatening and neutral stimuli, the question remains

whether stimulus encoding is faster over centroparietal and motor areas during perceptual decisions on socioemotional versus non-

emotional stimuli.

Several methodological constraints in previous research have precluded a direct comparison between these two types of stimuli. Past

studies have focused either on perceptual decisions on emotional displays37,38,41–44 or on social vs. non-social stimuli.45–51 To our knowledge,

only one study has compared decisions on static facial displays of emotion and animal pictures and concluded that there is a common neural

signature for emotional and non-emotional decisions under perceptual ambiguity.52 However, by focusing only on the late positive potential

(LPP, beginning�400 ms after stimulus onset), this study does not provide information about early processing steps, making it impossible to

determinewhether the processing of emotional stimuli is prioritized over non-emotional ones. Furthermore, neither the amount of perceptual

evidence nor the detection sensitivity across stimuli was equalized between the two tasks. Therefore, no previous study has precisely
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characterized, within participants, the neural mechanisms involved in making decisions about perceptual stimuli that simultaneously vary on

threat and another non-threatening neutral dimension in a controlled, equalized way.

To reach a comprehensive understanding of whether threat expressions are prioritized during decision-making, we have developed a

novel electroencephalography (EEG) paradigm in which participants performed two different detection tasks (emotion vs. color) on the

same, two-dimensional visual stimuli.We orthogonallymanipulated the strength of perceptual evidence in the stimuli by presentingmorphed

facial expressions (from neutral to angry) with amorphed color background (fromgrey to violet). In different blocks, participants were asked to

report the presence or absence of either emotion (anger) or color (violet) in the stimulus, while ignoring the other task-irrelevant dimension

(see Figure 1). We used facial expressions of anger as threat stimuli signaling potentially harmful intentions. Since the association of angry

faces with direct and averted gaze has been shown to be appraised as high and low threat, respectively53–56 we manipulated the contextual

significance of the displayed emotion via changes in gaze direction. Gaze direction was never mentioned to participants and was irrelevant to

task performance. Importantly, to closely match emotion and color perceptual detection tasks, we not only equalized the amount of sensory

evidence in the stimuli across tasks using morph matching, but also equalized participants detection sensitivity across the two stimulus di-

mensions (emotion and color) using an adaptive Bayesian titration procedure.

We hypothesized (Hypothesis 1 - H1) earlier selective neural encoding of the threat-related dimension (defined here as co-variation be-

tween neural activity and perceptual features of the stimulus) in the emotion task, as compared to the encoding of the color dimension in

the color task; and (H2) earlier prediction of choice in motor-related signals in the emotion task compared to the color task. Finally, we ex-

pected that both information processing (H3a) and choice prediction (H3b) should be stronger for high compared to low threat signals,

i.e., for angry faces associated with direct gaze compared to averted gaze.17,41,57,58

RESULTS

Behavioral results from the emotion vs. color task

For emotion and color decisions separately, we fitted participants’ behavior with a noisy, ‘signal detection’-like psychometricmodel (inspiredby

the Signal Detection Theory - SDT) that could account for each observer’s decisions, and extracted the sensitivity parameter, which reflects the

observer’s sensitivity to sensory information, and the response bias parameter, which reflects the observer’s tendency to interpret the stimulus

as displaying either one of the two options (anger or neutral for emotion decisions, violet or grey for color decisions). In order to test our first

hypothesis, i.e., earlier neural encoding of stimulus strength in the emotion task than in the color task, we needed to ensure that any neural

difference was not due to differences in detection sensitivity between the tasks. Therefore, we used a Bayesian titration procedure to ensure

equal sensitivity across tasks (see STAR methods for details). As displayed in Figure 2A (left panel), the titration procedure was successful in

equalizing the detection sensitivity between the two tasks, as the sensitivity parameter in the emotion task (0.63 G 0.16) did not significantly

Figure 1. Stimuli and experimental procedure

The top panel shows examples of morphed anger expressions and color masks used to orthogonally manipulate the strength of perceptual evidence in the

stimuli. Note that only four of the seven levels of morphs created from neutral to anger and from grey to violet are presented. The bottom panel illustrates

the time course of one trial during perceptual detection tasks. After a fixation period, a morphed face, on top of which is superimposed a morphed color

mask, was displayed for 250 ms. After face offset, and depending on the block, participants reported the presence or absence of either emotion (anger) or

color (violet) in the stimuli, while ignoring the other task-irrelevant dimension.
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differ from that in the color task (0.64G 0.17) (T37 = 0.33,p= 0.73, d =�0.073, BF= 0.187). However, there was a difference in the bias parameter

between the emotion (�2.69G 0.64) and the color tasks (�3.16G 0.99) (T37 = 2.40, p= 0.02, d = 0.562, BF = 2.209), andwe therefore accounted

for the choice at each trial in our encoding regressions. Participants were also faster in the color task (meanG sem: 690G 39ms) as compared to

the emotion task (meanG sem: 820 G 46 ms) (T36 = �9.264, p < 0.001, d = 1.119, BF = 2.1267e+08) (Figure 2A – left panel).

We then examined whether responses and reaction times changed as a function of the irrelevant dimension (color intensity in the emotion

task, emotion intensity in the color task). There was no interference, as the percentage of anger choices did not vary with color intensity nor did

the associated reaction times, and the percentage of violet choices did not vary with anger intensity, nor did the associated reaction times

(Figure 2A – right panel).

Drift-diffusion model results

Because the SDT framework is static over time, we further investigated these behavioral differences by fitting and comparing different drift-

diffusion models (DDMs59). DDMs assume that sensory evidence for competing choices accumulates over time until a decision boundary is

Figure 2. Behavioral results

(A) The top-left panel shows the psychometric function representing the proportion of ‘anger’ (in blue) or ‘violet’ (in grey) responses as a function of the strength of

the decision-relevant perceptual evidence for anger or violet (percentage of morph, 0 = neutral or grey, 100% anger or violet). Dots and attached error bars

indicate the experimental data (mean G sem). Lines and shaded error bars indicate the prediction of the fitting model. The bottom-left panel represents

mean reaction times as a function of the strength of perceptual evidence for anger or violet. Top- and bottom-right panels present the psychometric

function representing the proportion of ‘anger’ or ‘violet’ responses (top) and mean reaction times (bottom) as a function of the strength of the decision-

irrelevant perceptual evidence (i.e., emotion intensity in color decisions, and color intensity in emotion decisions).

(B) Drift-diffusion model results. The best-fitting model included the effect of task, intensity level, and their interaction on threshold (a), drift rate (v), and non-

decision time (t0), and an effect of task on starting point bias (z). Light points and lines: Individual estimates and 95% Credible Interval. Dark points and lines:

Group level estimates and 95% Credible Interval.
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reached. By modeling choice and response times together, DDMs allowed inferring the cognitive processes involved in our two binary de-

cision tasks by estimating a set of parameters that describe the dynamic decision process, including the rate of evidence accumulation (drift

rate v), the distance between the two response boundaries (threshold a), the starting point of the decision between the two alternatives (start-

ing point bias; z), as well as the time required for stimulus encoding and response execution (non-decision time t0).

The best-fitting model included the effect of task, intensity level, and their interaction on threshold (a), drift rate (v), and non-decision time

(t0), and an effect of task on starting point bias (z) (see Figure 2B). The three chains converged properly (maximum R-hat = 1.009; minimum

Effective Sample Size = 1026; the ‘hairy caterpillar’ shape was visually verified), and the simulated data showed a high correlation with the

observed data (Anger/Violet response proportion: rcol = 0.998, remo = 0.998; Anger/Violet RTs: rcol = 0.955; remo = 0.977; Neutral/Grey

RTs: rcol = 0.989; remo = 0.985) (see supplementary text for detailed information about model diagnostic).

Regarding the starting point bias (z), although the posterior parameters indicated a credibly small difference between the Color and

Emotion tasks (zcol-emo = �0.021; 95%CrI = [-0.041, �0.0001]; posterior probability pp(z col-emo>0) = 0.024), with a lower starting point in the

Color task compared to the Emotion task, neither the starting point for the Color task (zcol = 0.489; 95%CrI = [0.475, 0.503]; pp(z col >.5) =

0.058) nor that for the Emotion task (zemo = 0.510; 95%CrI = [0.494, 0.525]; pp(z emo>.5) = 0.896) was credibly different from 0.5. This pattern

suggests that even if participants were slightly more likely to choose Angry rather than Neutral compared to Violet rather than Grey, they

did not exhibit a credible response bias in either task.

With respect to the threshold parameter (a), the posterior parameters showed no credible difference between tasks (acol-emo = 0.008; 95%

CrI = [�0.079, 0.098]; pp(a col-emo>0) = 0.574). However, the continuous effect of Intensity was credible in both the Color task (bcol =�0.068; 95%

CrI = [�0.080, �0.056]; pp(bcol>0) = 0) and the Emotion task (bemo =�0.023; 95%CrI = [�0.034,�0.012]; pp(b emo>0) = 0), with greater intensity

being associated with a lower threshold in both tasks. Furthermore, the effect of intensity was credibly more negative in the Color task

compared to the Emotion task (bcol-emo = �0.045; 95%CrI = [�0.061, �0.028]; pp(b col-emo>0) = 0), suggesting that the lowering of response

threshold with increasing intensity level was present in both tasks, but with a smaller effect in the Emotion task.

Regarding the drift rate (v), the posterior parameters revealed that both the drift rate for the Color task (vcol = �0.987; 95%CrI =

[�1.194, �0.778]; pp(v col>0) = 0) and for the Emotion task (vemo = �0.211; 95%CrI = [�0.370, �0.048]; pp(v emo>0) = 0.006) were credibly

lower than 0. Furthermore, the drift rate in the Color task was credibly lower than in the Emotion task (vcol-emo = �0.778; 95%CrI =

[-1.038, �0.510]; pp(v col-emo>0) = 0). Given that these estimates represent the parameter at the level 0 of intensity, these results suggest

that for these ambiguous stimuli, participants favored the decision toward the Grey and Neutral boundaries, and that this effect was

stronger during the Color task. We additionally found a credible effect of Intensity for both the Color (bcol = 0.804; 95%CrI = [0.731,

0.876]; pp(b col>0) = 1) and the Emotion task (bemo = 0.619; 95%CrI = [0.565, 0.672]; pp(b emo>0) = 1), and a credible difference of these

effects between the tasks (bcol-emo = 0.186; 95%CrI = [0.094, 0.275]; pp(b col-emo>0) = 1), with a stronger effect of intensity in the Color

task. Therefore, as expected, increasing morph intensity toward a Violet or Angry stimulus led participants to more efficient evidence

sampling toward that boundary, and this effect was stronger during the Color task.

Finally, posterior parameters for the non-decision time (t0) showed a credible difference in the non-decision time between the tasks

(t0col-emo = �0.070; 95%CrI = [�0.103, �0.037]; pp(t0 col-emo>0) = 0), with more time required to encode the stimulus and/or execute the

response in the Emotion task. Interestingly, we found the Intensity effect to be credible for both the Color and for the Emotion tasks. How-

ever, while non-decision time increased with intensity for the Color task the (bcol = 0.003; 95%CrI = [0.001, 0.004]; pp(b col>0) = 0.994), it de-

creases with intensity for the Emotion task (bemo = �0.003; 95%CrI = [�0.005, �0.001]; pp(b emo>0) = 0.005), as further confirmed by a cred-

ible posterior difference between these two effects (bcol-emo = 0.006; 95%CrI = [0.003, 0.009]; pp(b col-emo>0) = 1).

Neural encoding of emotion and color intensity

To reach a comprehensive understanding of whether threat expressions are prioritized during decision-making, we then tested Hypothesis 1

of an earlier selective neural encoding of threat-related information during the emotion task compared to the neural encoding of the color

dimension in the color task. Instead of computing event-related averages, our EEG analyses consisted of a parametric regression-based

approach where single-trial EEG signals were regressed against variables of interest (here the evidence strength, corresponding to the in-

tensity of the displayed emotion or of the color mask) at each electrode and time point following the presentation of the stimulus. The result-

ing time course at each electrode represents the degree to which EEG activity ‘encodes’ (co-varies with) the evidence strength. Note that we

first conducted this analysis separately for the emotion task (regressor: emotion intensity) and the color task (regressor: color intensity) and

performed a multiple comparison correction on one-sample t-tests comparing parameter estimates against zero (null effect), to isolate the

electrodes and timepoints where neural encoding of intensity was significant.

As illustrated in Figure 3A and Table 1, emotion intensity was encoded as soon as 100-200 ms over frontal and central electrodes in the

emotion task, whereas the earliest cluster that encoded the color intensity in the color task did not appear until 260ms over parietal and frontal

electrodes (see Figure 3B). Five other clusters were found significant in the color task, which emerged at 370 ms, 490 ms and 660 ms (see

Table 1 for full details).

We then conducted a multiple comparison analysis on the difference between the parameter estimates for emotion encoding and color

encoding, which again revealed a significant cluster for the emotion intensity encoding between 100 ms and 230 ms. In contrast, only two of

the six clusters identified in the first analysis were found to be significant when comparing emotion and color encoding directly, at 370 ms and

660 ms (see Table 1). In conclusion, there is a specific early encoding of emotion intensity around 100 ms, whereas there is a later encoding of

color information starting at 270 ms.
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Choice prediction in the emotion vs. color task

Besides prioritized visual processing, we also hypothesized (H2) that the perception of threat-related facial displays would facilitate selection

among action opportunities60,61 promoting earlier preparation of the upcoming response in effector-selective structures.16–22,41 Knowing that

the suppression of mu-beta activity is a marker of motor preparation, we computed spectral power in the 8-12 Hz mu-alpha and 12-32 Hz

Figure 3. Neural encoding and choice-predictive activity

(A) Scalp topography of the first significant cluster for the encoding of emotion intensity (against zero), that emerged as soon as 100-200 ms on frontal and central

electrodes. Significant electrodes are highlighted in white. A similar significant cluster was found when emotion encoding was contrasted to color encoding (see

Table 1). Below the scalp topography, encoding time course for emotion (blue) and color (grey) decisions separately, expressed as mean parameter estimates in

arbitrary units (a.u.) at electrodes of interest. Shaded error bars indicate s.e.m. Shaded light yellow area indicates the significant cluster time window (100-200 ms).

(B) Scalp topography of the first significant cluster for the encoding of color intensity (against zero), that appeared at 260 ms on parietal and frontal electrodes.

Same conventions as (a).

(C) Time course of choice-predictive activity (stimulus-locked) in the motor lateralization index for emotion and color decisions in mu frequency band (8-12 Hz).

Note that the motor-preparatory EEG signals were predictive of participants choices from 240 ms after stimulus onset during emotion decisions, and only from

520ms following stimulus presentation during color decisions. Thick blue and grey lines at the top of the figure indicate the times where the parameter estimate is

significant against zero (blue emotion task, grey color task). Shaded light yellow area indicates the timepoints where there is a significant difference between the

two (240 ms–380 ms). The right panel shows the extracted parameter estimates averaged across the motor lateralization electrodes over the 240-380 ms window,

separately for faces with direct (GazeD) and averted (GazeA) gaze for emotion decisions, as well as for color decision (Colr).
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mu-beta frequency bands tomeasure response-preparatory signals in the neural data.31,62 For emotion/color decisions, we obtained themo-

tor lateralization activity specific to ‘anger’/’violet’ responses by subtracting contralateral from ipsilateral mu spectral activity (8-12 Hz or 12-

32 Hz) relative to the hand assigned to ‘anger’/’violet’ responses (counterbalanced across subjects), over effector-selective electrodes at each

time point for all subjects. Then, to test Hypothesis 2 of an earlier prediction of the choice in motor-related signals during the emotion vs. the

color task, we performed a logistic regression to predict the choice of Anger or Violet in the Emotion and Color tasks, respectively, with the

motor lateralization activity in the 8-12 Hz mu-alpha band, and reaction times as an additional regressor. As shown in Figure 3C, the anger

response was significantly predicted as soon as 260 ms (t-test against zero, p < 0.05), while the violet response was predicted at 520 ms, both

up to 1s after stimulus onset (significant difference between the two tasks from 240 ms to 380 ms at p < 0.05, cluster-corrected p-value<0.001,

Figure 3C; see also supplemental information: Figure S4 for the AUC values of the logistic model). We then performed the same analysis with

the motor lateralization activity in the 12-32 Hz mu-beta band, but there were no differences in choice prediction between the two tasks (all

p > 0.08). The prediction of choice by the 12-32 Hz mu-beta band was significant for both the anger response and the violet response around

420 ms after stimulus onset (starting at 420 ms for the emotion task, and at 440 ms for the color task, p < 0.05).

High threat signals influence on encoding and choice prediction

Finally, contextual cues, such as gaze or body direction, have been shown to significantly influence the judged relevance of the threat signals

to the observer and the associated neural processing.17,22,41 Our third hypothesis therefore predicted that both the encoding (H3a, Hypoth-

esis 1 with the gaze direction) and the choice prediction (H3b, Hypothesis 2 with the gaze direction) should be stronger for high vs. low threat

signals, i.e., for angry faces associated with direct gaze vs. averted gaze. To test whether gaze direction influenced emotion processing (H3a),

we ran a cluster analysis on the encoding of emotion associated with direct and averted gaze separately, and then a direct comparison of the

two. Only close to significance effects emerged for direct gaze emotion encoding (see Table 2), suggesting that the effects may be more

important for high threat signals (although no significant differences between direct and averted gaze were observed).

To test whether choice prediction was stronger for angry faces with a direct gaze, we predicted the response ‘anger’ with the motor later-

alization activity in the 8–12 Hzmu-alpha band in the previously isolated timewindow from 240ms to 380ms, separately for direct and averted

gaze. As illustrated by Figure 3C, we found that only the choice prediction for faces with a direct gaze was significant against zero (T36 = 3.52,

p = 0.001), while it was not significant for faces with an averted gaze and for the color choice (p > 0.17). There was a significant difference

between the emotion choice prediction when the face had a direct gaze as compared to the color choice prediction (T36 = 3.37, p =

0.0018), but there were no significant differences between choice prediction for direct vs. averted gaze, nor for averted gaze vs. co-

lor (p > 0.10).

DISCUSSION

The present study investigated whether perceptual decisions about the emotional, threat-related aspects of stimuli engage specific or similar

neural computations compared to decisions on their neutral, non-threatening components.We used electroencephalography (EEG) to simul-

taneously record brain activity, while participants performed two different detection tasks (emotion or color) on the same, two-dimensional

Table 1. Significant clusters for the encoding of emotion and color evidence

Time window T statistic p value Electrodes

Emotion encoding against zero

100-200ms �164.24 0.0253 F1, FC3, FC1, C1, C3, CP3, CP1, FCz, Cz

Color encoding against zero

260-340ms �306.16 0.004 P1, P3, P5, P9, PO7, PO3, O1, Iz, Oz, POz, Pz, P2, PO4, O2

290-330ms 161.22 0.028 Fp1, AF7, AF3, F1, F3, F5, Fpz, Fp2, AF4, AFz, Fz, F2

370-450ms �306.16 0.004 F1, FC3, FC1, C1, CPz, Fz, F2, F4, FC4, FC2, FCz, Cz, C2, C4

370-450ms 422.76 0.0013 P5, P7, P9, PO7, PO3, O1, Iz, Oz, POz, P8, P10, PO8

490-560ms �181.56 0.0293 P1, P3, PO3, POz, Pz, P2, P4, P6, PO4

660-800ms �142.44 0.0426 F6, F8, FT8, FC6, C6, T8

660-800ms 422.76 0.01 CP3, CP1, P1, P3, P5, PO3, O1, POz, Pz, CPz, CP4, CP2, PO4

Emotion vs. color

100-230ms �430.50 0.0013 F1, F3, FC1, C1, C3, CP3, CP1, CPz, Fz, F2, FC4, FCz, Cz, C2, CP2

90-210ms 257.90 0.005 P7, P9, PO7, O1, Iz, Oz, P10, PO8, O2

390-450ms �208.34 0.01 P7, P9, PO7, O1, Iz, Oz, P10, PO8, O2

380-560ms 642.47 0.002 F1, FC1, C1, CP3, CP1, P1, P3, P5, PO3, Pz, CPz, Fz, F2, FC2,

FCz, Cz, C2, C4, CP2, P2, P4, P6, PO4

620-800ms �272.15 0.005 P1, PO3, Iz, Oz, POz, Pz, CP4, CP2, P4, P6, PO4, O2
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visual stimuli. Detection sensitivity was equalized across dimensions using an adaptive titration procedure. Our results revealed three specific

effects when perceptual decisions concerned emotion rather than color. First, the amount of perceptual evidence (intensity) was encoded

earlier (100-200 ms) in a cluster of central electrodes in the emotion task compared to the color task (290–330 ms). Second, participants’

choices were predicted earlier by the mu-alpha EEG rhythm in the emotion task (240 ms) than in the color task (380 ms). Third, this choice-

predictive activity over motor cortex was stronger for high-threat signals, i.e., for angry faces with direct versus averted gaze. Taken together,

these findings indicate that perceptual decisions regarding the threat-signaling dimension of facial displays are associated with prioritized

neural coding in action-related brain regions, supporting the motivational value of threat-related social signals.

Encoding of emotion and color intensity

Consistent with previous findings that threatening facial expressions receive privileged processing compared to neutral expressions and non-

social stimuli6 we observed earlier (100-200 ms) encoding of evidence strength in the emotion task compared to the color task (290-330 ms).

Past experiments have shown that electrophysiological (MEG or EEG) activity discriminates emotional (anger) expressions from neutral ex-

pressions in the first 100ms39,63 and correlates with BOLD responses in the amygdala and occipital cortices.64Moreover, in contrast to gender

or identity tasks, which are restricted to occipital regions, early emotion decoding (110-210 ms) involved a widely distributed network,

including both temporo-parietal and frontal regions.65 Together, these studies show that emotional, and particularly threatening, facial ex-

pressions are processed rapidly (from around 100 ms) by both subcortical and cortical brain networks. Here, by contrasting two perceptual

decision tasks (emotion and color) performed on the same two-dimensional visual stimuli, we show that privileged processing in such an early

time window (100-200 ms) benefits only the emotional, threat-signaling dimension.

Several authors have argued that perceptual saliency (including low-level perceptual features) and appraisal relevance jointly drive

prioritized stimulus processing.60,66–68 In the present study, owing to a titration procedure that equalized detection sensitivity across di-

mensions, highly salient information in the stimuli (angry expressions) did not interfere with the processing of color information during

color decisions (see Figure 2A). Prioritization of the emotional, threat-related dimension may thus only occur when this information was

relevant to the task at hand (i.e., during emotion decisions, not color decisions, see also69), concurring the suggestion that relevance

detection is not automatic, but depends on task demands such as perceptual and/or cognitive load.67 Besides being task-relevant,

the emotional, threat-related dimension also varies in terms of its immediate relevance to the observer. Indeed, angry faces associated

with direct or averted gaze clearly differ in terms of implied threat to the observer and have been shown to be appraised as high or low

threat, respectively53–55 Surprisingly, and contrary to our hypothesis based on previous findings,41 no significant difference was observed

between direct and averted angry faces in their early perceptual processing in the present study. Only near-significant effects were found

for direct gaze emotion encoding. Note that this absence of significant difference between direct and averted angry displays may be

related to a lack of statistical power, as only half of the trials were presented as compared to El Zein et al.,41 as far as the effect of

gaze is concerned.

Choice prediction

Additionally, and similar to past experiments that observed a buildup of choice-selective activity over motor-related regions during percep-

tual decision on non-social stimuli,31,32,36,62,70–73 it was possible to statistically predict participants’ choices from the mu/alpha power over

motor cortical areas. This signal has been suggested to reflect the formation of an upcoming decision, i.e., a commitment to one choice alter-

native.31,33,74 Here, we showed that the onset of choice predictive activity was earlier for emotion decisions (260 ms after stimulus onset) than

for color decisions (520ms), strongly suggesting that the emotional, threat-related dimension of our complex two-dimensional stimuli was not

only processed, but also translated into action selection earlier than the color dimension. Moreover, this earlier choice predictive activity was

stronger for high-threat signals, i.e., for angry faces with direct gaze compared to averted gaze.

Table 2. Significant clusters for the encoding of emotional expressions with direct and averted gaze

Time window T statistic p value Electrodes

Direct gaze emotion against zero

80-130ms �114.65 0.0706 F1, FC3, FC1, C1, C3, Fz, F2,

FCz

270-330ms 152.96 0.03 AF3, F1, F3, Fpz, AF4, AFz, Fz,

F2

270-320ms �129.05 0.056 P5, P9, PO7, PO3, O1, Oz, P8,

P10, PO8, PO4, O2

Averted gaze emotion against zero

None p > 0.9

Direct vs. averted gaze emotion

None p > 0.6
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The question remains as to why perceived social threats, notably those that are observer-relevant, lead to earlier selection between action

opportunities in motor-related cortices. One likely explanation is related to the high behavioral/motivational relevance of emotional expres-

sions. Evolutionary accounts of emotional displays argue that the very function of emotions is to serve communicative purposes by conveying

critical information about the emitters75–77 while also facilitating behavioral responses in the observers.78,79 Emotional faces can be translated

into action opportunities via different neural pathways (see review61). In humans, a growing body of literature concurs with evolutionary ac-

counts by highlighting a functional and anatomical link between neural systems that sustain emotional appraisal and those that underlie ac-

tion preparation.21,80–82 Moreover, and in agreement with the present results, the influence of threat displays on motor-related areas was

observed from 150 ms to 300 ms after stimulus onset.16,17,20,41,57 We therefore propose that the earlier choice predictive activity during

emotion decisions is related to the behavioral relevance of the perceived threat to the observer, rather than to its sensory properties.

Threat-signaling emotions would facilitate the selection of adaptive behavioral responses.

Nevertheless, and somewhat counterintuitively, although participants’ choices could be predicted earlier in the emotion task, their reac-

tion times were longer than in the color task (even though we controlled for RTs in the choice predictive analysis). In the past, longer reaction

times to emotional stimuli have been suggested to reflect an interference between the attentional resources devoted to their privileged pro-

cessing and task demands.83,84 Slower RTs to threatening stimuli could also reveal momentary freezing, which facilitates risk assessment by

enhancing perceptual and attentional processes to the source of danger and preparing subsequent actions.85,86 Here, we used drift-diffusion

model analysis to show that the emotion task was associated with a smaller decrease in boundary separation with increasing intensity (a) and

longer non-decision times (t0) compared to the color task. Consistent with our findings, the presentation of threat-related (fearful) facial ex-

pressions led participants to subsequently respond cautiously, as indexed by both slower reaction times and higher boundary separation,

compared to neural expressions.87 Moreover, higher boundary separation has also been found for emotional faces that have an immediate

relevance to the observer,88 i.e., fearful faces associated with averted gaze, which are rated as being both more intense 54,55 and more nega-

tive89 compared to direct fearful faces. Beaurenaut et al.88 proposed that participants are particularly cautious about misinterpreting such

danger-related social signals. Furthermore, it has been shown that during perceptual decisions on non-social neutral stimuli, both higher

boundary separation and larger non-decision time estimates are observed when participants are instructed to trade speed for accuracy.90

Thus, in order to be more accurate, participants can increase their response caution, and/or adopt strategic motor slowing, i.e., delay their

motor response once their decision has been made.91 Even after the decision has been reached, longer t0 in response to threatening signals

may suggest that a freezing mechanism is in place, involving motor execution speed. This interpretation seems consistent with the notion of

freezing as a state of motor immobility, accompanied by heightened vigilance and caution.92 Overall, this suggests that while perceptual de-

cisions about threat-signaling emotions (relative to color) facilitate action selection among available alternatives, participants remain cautious

and freeze before fully committing to and implementing the selected plan, to avoid costly misinterpretations.

Conclusion

In conclusion, this is the first study showing that the emotional, threat-related, dimension of our stimuli was processed and translated into

motor activation earlier than the non-emotional (color) dimension, while equalizing the amount of sensory evidence, as well as participants’

detection sensitivity, across tasks. Our findings strongly support the existence of prioritized neural computations for processing behaviorally

and socially relevant signals, i.e., threat-related facial expressions, during perceptual decision-making. Earlier choice predictive activity over

motor cortices during emotion decisions supports the idea that social threat displays are motivationally relevant, not only by providing infor-

mation about others’ affective states and potential behavioral intentions, but also by conveying action demands to the perceiver.93

Limitations of the study

The present experiment is not without limitations. First, our main results depend on the contrast with a control condition (color) that is neither

social nor threatening, and thus cannot dissociate the processing of socio-emotional information from threat-related information in general.

Yet, the contrast between direct and averted gaze allowed to provide some arguments in favor of threat prioritization, at least in terms of

motor activation. Moreover, our experimental design allowed participants to perform two different detection tasks (emotion or color) on

the same two-dimensional visual stimulus, while equalizing detection sensitivity across the two tasks. We propose that the prioritization of

emotion decisions is driven by the interaction between the social nature of emotions and the behavioral relevance of anger. Still, we acknowl-

edge that the absence of a significant difference between direct and averted angry faces in their early perceptual processing may be related

to a lack of statistical power, suggesting that future studies should try to increase the number of trials to replicate both El Zein et al.41 and the

current results in a single study. Further work is also needed to complement the present findings, by contrasting social but non-threatening

stimuli with non-social but threatening stimuli.

Second, although we equalized emotion and color decisions in terms of available sensory evidence and detection sensitivity, a difference

in the reaction times and bias parameters was observed between the two types of decisions. To address this, we used single-trial regressions

of EEG signals against the intensity of the displayed emotion and of the color mask, an experimental approach that measures stimulus sensi-

tivity across tasks and which should dissociate perceptual and response bias. We also controlled all brain analyses on a trial-by-trial basis for

the participants’ subsequent detection reports (detection of violet in the color task, detection of anger in the emotion task). However, recent

evidence in mice suggests that a lack of change in sensitivity does not prevent effects on sensory encoding – and that a behavioral bias

can reveal such an effect.94 Therefore, we cannot completely exclude that the observed privileged processing in the early time window
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(100-200 ms), which only benefited the emotional, threat-signaling dimension during emotion decisions, may reflect a better sensory encod-

ing of emotion compared to color.
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(2015). Emotional contagion: its scope and
limits. Trends Cogn. Sci. 19, 297–299.
https://doi.org/10.1016/j.tics.2015.03.011.

80. de Gelder, B., Snyder, J., Greve, D., Gerard,
G., and Hadjikhani, N. (2004). Fear fosters
flight: a mechanism for fear contagion when
perceiving emotion expressed by a whole
body. Proc. Natl. Acad. Sci. USA 101, 16701–
16706. https://doi.org/10.1073/pnas.
0407042101.
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G., and Grèzes, J. (2023). Prioritization of
danger-related social signals during
threat-induced anxiety. Emotion 23, 2356–
2369. https://doi.org/10.1037/
emo0001231.

89. Ewbank, M.P., Fox, E., and Calder, A.J.
(2010). The interaction between gaze and
facial expression in the amygdala and
extended amygdala is modulated by
anxiety. Front. Hum. Neurosci. 4, 56. https://
doi.org/10.3389/fnhum.2010.00056.

90. Voss, A., Rothermund, K., and Voss, J.
(2004). Interpreting the parameters of the
diffusion model: An empirical validation.
Mem. Cognit. 32, 1206–1220. https://doi.
org/10.3758/BF03196893.

91. White, C.N., Congdon, E., Mumford, J.A.,
Karlsgodt, K.H., Sabb, F.W., Freimer, N.B.,
London, E.D., Cannon, T.D., Bilder, R.M.,
and Poldrack, R.A. (2014). Decomposing
Decision Components in the Stop-signal
Task: A Model-based Approach to
Individual Differences in Inhibitory Control.

ll
OPEN ACCESS

iScience 27, 109951, June 21, 2024 11

iScience
Article

https://doi.org/10.1093/cercor/bhi130
https://doi.org/10.1093/cercor/bhi130
https://doi.org/10.1523/JNEUROSCI.3540-07.2007
https://doi.org/10.1523/JNEUROSCI.3540-07.2007
https://doi.org/10.1523/JNEUROSCI.1677-17.2017
https://doi.org/10.1523/JNEUROSCI.1677-17.2017
https://doi.org/10.1523/ENEURO.0235-17.2017
https://doi.org/10.1523/ENEURO.0235-17.2017
https://doi.org/10.1046/j.0956-7976.2003.psci_1479.x
https://doi.org/10.1046/j.0956-7976.2003.psci_1479.x
https://doi.org/10.1093/brain/awp255
http://refhub.elsevier.com/S2589-0042(24)01173-8/sref55
http://refhub.elsevier.com/S2589-0042(24)01173-8/sref55
http://refhub.elsevier.com/S2589-0042(24)01173-8/sref55
http://refhub.elsevier.com/S2589-0042(24)01173-8/sref55
http://refhub.elsevier.com/S2589-0042(24)01173-8/sref55
https://doi.org/10.1016/j.biopsycho.2015.06.008
https://doi.org/10.1016/j.biopsycho.2015.06.008
https://doi.org/10.1016/j.neuroimage.2014.10.063
https://doi.org/10.1016/j.neuroimage.2014.10.063
https://doi.org/10.1093/cercor/bhac385
https://doi.org/10.1093/cercor/bhac385
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1177/1754073909103595
https://doi.org/10.1177/1754073909103595
https://doi.org/10.31234/osf.io/vfbcp
https://doi.org/10.31234/osf.io/vfbcp
https://doi.org/10.1523/JNEUROSCI.1094-12.2013
https://doi.org/10.1523/JNEUROSCI.1094-12.2013
https://doi.org/10.1002/hbm.24226
https://doi.org/10.1002/hbm.24226
https://doi.org/10.1016/j.neuroimage.2018.05.081
https://doi.org/10.1016/j.neuroimage.2018.05.081
https://doi.org/10.1016/j.neuroimage.2022.119374
https://doi.org/10.1016/j.neuroimage.2022.119374
https://doi.org/10.1080/02699930902975754
https://doi.org/10.1080/02699930902975754
https://doi.org/10.1016/bs.pbr.2019.03.028
https://doi.org/10.1016/bs.pbr.2019.03.028
https://doi.org/10.1515/revneuro.2003.14.4.303
https://doi.org/10.1515/revneuro.2003.14.4.303
https://doi.org/10.3389/fpsyg.2018.01334
https://doi.org/10.3389/fpsyg.2018.01334
https://doi.org/10.1016/j.neuroimage.2018.11.027
https://doi.org/10.1016/j.neuroimage.2018.11.027
https://doi.org/10.1523/JNEUROSCI.1066-18.2018
https://doi.org/10.1523/JNEUROSCI.1066-18.2018
https://doi.org/10.1152/jn.00163.2019
https://doi.org/10.1152/jn.00163.2019
https://doi.org/10.1111/ejn.12511
https://doi.org/10.1111/ejn.12511
https://doi.org/10.1016/j.neuroimage.2022.119667
https://doi.org/10.1016/j.neuroimage.2022.119667
https://doi.org/10.1016/0301-0511(94)90032-9
https://doi.org/10.1016/0301-0511(94)90032-9
https://doi.org/10.1207/s15327957pspr0904_1
https://doi.org/10.1207/s15327957pspr0904_1
https://doi.org/10.1016/j.tics.2018.02.006
https://doi.org/10.1016/j.tics.2018.02.006
https://doi.org/10.1016/j.pragma.2013.06.007
https://doi.org/10.1016/j.pragma.2013.06.007
https://doi.org/10.1016/j.tics.2015.03.011
https://doi.org/10.1073/pnas.0407042101
https://doi.org/10.1073/pnas.0407042101
https://doi.org/10.1002/hbm.22598
https://doi.org/10.1002/hbm.22598
https://doi.org/10.1073/pnas.1107214108
https://doi.org/10.1073/pnas.1107214108
https://doi.org/10.1016/j.tics.2009.01.006
https://doi.org/10.1016/j.tics.2009.01.006
https://doi.org/10.1037/0033-2909.120.1.3
https://doi.org/10.1016/j.neulet.2013.12.038
https://doi.org/10.1016/j.neulet.2013.12.038
https://doi.org/10.1016/j.cortex.2019.08.005
https://doi.org/10.1016/j.cortex.2019.08.005
https://doi.org/10.1037/emo0000342
https://doi.org/10.1037/emo0000342
https://doi.org/10.1037/emo0001231
https://doi.org/10.1037/emo0001231
https://doi.org/10.3389/fnhum.2010.00056
https://doi.org/10.3389/fnhum.2010.00056
https://doi.org/10.3758/BF03196893
https://doi.org/10.3758/BF03196893


J. Cogn. Neurosci. 26, 1601–1614. https://
doi.org/10.1162/jocn_a_00567.

92. Roelofs, K. (2017). Freeze for action:
neurobiological mechanisms in animal and
human freezing. Philos. Trans. R. Soc. Lond.
B Biol. Sci. 372, 20160206. https://doi.org/
10.1098/rstb.2016.0206.

93. Horstmann, G. (2003). What do facial
expressions convey: feeling states,
behavioral intentions, or action requests?
Emotion 3, 150–166. https://doi.org/10.
1037/1528-3542.3.2.150.

94. Jin, M., and Glickfeld, L.L. (2019).
Contribution of Sensory Encoding to
Measured Bias. J. Neurosci. 39, 5115–5127.
https://doi.org/10.1523/JNEUROSCI.0076-
19.2019.

95. Langner, O., Dotsch, R., Bijlstra, G.,
Wigboldus, D.H.J., Hawk, S.T., and van
Knippenberg, A. (2010). Presentation and
validation of the Radboud Faces Database.
Cogn. Emot. 24, 1377–1388. https://doi.org/
10.1080/02699930903485076.

96. Caruana, N., Inkley, C., and El Zein, M.
(2020). Gaze direction biases emotion
categorisation in schizophrenia. Schizophr.
Res. Cogn. 21, 100181. https://doi.org/10.
1016/j.scog.2020.100181.

97. Ioannou, C., Zein, M.E., Wyart, V., Scheid, I.,
Amsellem, F., Delorme, R., Chevallier, C.,
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Julie Grèzes (julie.grezes@ens.

psl.eu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

De-identified EEG data and behavioral data have been deposited at the Open Science Framework (OSF) and will be publicly available, once

the paper is accepted at https://osf.io/zmyaf/?view_only=93561733ef3f4d6e88fe50fea13d2e03.

All original codes have been at theOpen Science Framework (OSF) andwill be publicly available, once the paper is accepted at https://osf.

io/zmyaf/?view_only=93561733ef3f4d6e88fe50fea13d2e03.

Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants

Thirty-eight healthy young adults (20 females; mean ageGs.d. = 23.15G 3.38 years) participated in an EEG experiment. All participants were

right-handed, had normal vision and no neurological or psychiatric history. The experimental protocol was approved by INSERMand the local

research ethics committee (Comité de protection des personnes Ile de France III - Project CO7-28, N� Eudract: 207-A01125-48) and was con-

ducted in accordancewith the Declaration of Helsinki. Participants providedwritten informed consent and were compensated for their partic-

ipation. One participant was excluded from the analyses due to a technical error while saving the data, and analyses were performed on 37

participants (20 females, mean age = 23.16 G 3.42 years).

Stimuli

The stimuli consisted of morphed facial emotion expressions ranging from neutral to angry expressions41,95 that have been used in several

studies.41,57,96,97 The full description of the stimuli can be found in El Zein et al.,41 and the stimuli are available upon request. 16 identities (8

females) were included in the current study. They varied in gaze direction (direct or averted 45� to the left or right) and emotion intensity - from

neutral to angry expressions with 7 levels of emotion. In addition, we created color masks over the faces, morphed from gray to violet with 7

levels of violet. To calibrate the morphing between the emotional expressions and the color masks, we ran an intensity rating pre-test of the

emotional and color morphs on an independent sample of participants (n = 10). Participants were presented with facial expressions or color

masks for 250 ms and rated their perceived intensity on a continuous scale from ‘‘not at all intense’’ to ‘‘very intense’’ using a mouse device

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Behavior and EEG data This paper OSF or Zenodo: https://doi.org/xxxx

Software and algorithms

MATLAB The Mathworks, Natick, MA, USA https://www.mathworks.com/products/matlab.html

Psychophysics-3 toolbox free set of Matlab and GNU Octave functions for

vision and neuroscience research.

http://psychtoolbox.org/

Python package HDDM MATLAB software toolbox for MEG, EEG and

iEEG analysis,

https://hddm.readthedocs.io/en/latest/index.html

Fieldtrip Toolbox Open-source MATLAB software toolbox for

MEG, EEG and iEEG analysis

https://www.fieldtriptoolbox.org/

Brainstorm Toolbox Open-source application for MEG/EEG

data analysis

https://github.com/brainstorm-tools/brainstorm3

R version 4.1.1 The R Project for Statistical Computing https://www.r-project.org/
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(with a maximum of 3 s to respond). Based on the results, we adjusted for differences between emotion and color morphs by linearizing the

mean curves of the judged intensities and creating corresponding morphs that were equalized according to the perceived intensities.

Experimental paradigm

Using the Psychophysics-3 toolbox,98,99 stimuli were projected onto a black screen. Each trial began with a white oval delineating the faces

that remained throughout the trial (see Figure 1). The white oval appeared for approximately 500 ms, followed by a white fixation dot pre-

sented at the eye level for approximately 1000 ms (to ensure a natural fixation on the upcoming faces and to avoid eye movements from

the center of the oval to the eye region). Then, the morphed face, over which we superimposed a morphed color mask, was presented for

250 ms. After the face offset, participants had to make either an emotion or a color decision in a blocked design. Depending on the block,

participants were asked to report (max. 2s after face offset) the presence or absence of either emotion (anger) or color (violet) in the stimulus,

while ignoring the other task-irrelevant dimension (see Figure 1). They provided their response by pressing one of the two buttons ‘Right Con-

trol’ and ‘Left Control’ keys on the keyboardwith their right and left index, respectively. A gray/violet and neutral/anger keymappingwas used

(4 possible hand mappings), kept constant within subjects and counterbalanced across subjects. The experiment was divided into 32 exper-

imental blocks (16 blocks of emotion decisions, 16 blocks of color decisions), each consisting of 32 trials, balanced in the number of gaze di-

rections (2), gender (2), and morph levels (8). Color masks and emotions were combined semi-randomly, such that within each block, no cor-

relation between emotion and color intensity was allowed (r < 0.05, p > 0.6). This resulted in a total of 512 trials (32 trials*16 identities) per

decision type (emotion/color), and 1024 trials for the entire experiment. Participants alternated between the emotion and color tasks at

each block. Prior to the experiment, each participant completed a short practice session (one emotion and one color block, two identities,

16 trials each).

To ensure that the observed differences at the neural level between tasks did not depend on differences in detection sensitivity to emotion

and color dimensions, we equalized detection sensitivity across emotion and color dimensions using an adaptive Bayesian titration proced-

ure. Participants completed a short titration session of two blocks (one emotion and one color block, two identities, 32 trials each), and each

participant’s perceptual sensitivity to both emotion and color dimensions was estimated separately. The emotion or color morph level were

entered as independent variables in a binomial general linear model (GLM) with probit link function to predict participants’ choices, and

parameter estimates were extracted for each dimension. These parameter estimates were then used to calculate a titration factor (i.e., multi-

plier) that was multiplied by the color mask morph applied to the face, allowing the color level of the stimulus to be rescaled to the same

perceptual intensity as the emotion level.100 This procedure was reiterated every two blocks throughout the experiment. This ensured that

the detection sensitivity between emotion and color decisions was calibrated and updated across the experiment, so that the same slope

of the psychometric function reflected participants’ behavior in both conditions.

Participants were informed prior to the experiment that they would receive one point for each ‘‘correct’’ response (i.e., correct detection

when themorph level was >3), which could result in a bonus of 5–10 Euros, dependingon their final score. Feedback on their performance (i.e.,

percentage of correct responses) was displayed on the screen after each block. Every 8 blocks, a progress bar allowed participants to estimate

how close they were to receiving a bonus. At the end of the experiment, all participants received the same compensation, regardless of their

performance.

Behavioral data analyses

The theoretical framework of Signal Detection Theory distinguishes between sensitivity to sensory information and response bias (or criterion)

that reflects the observer’s tendency to interpret the face as displaying either one of the two options (anger or neutral for emotion decisions,

violet or gray for color decisions). Within this framework, we used amodel of choice hypothesizing that decisions are formed based on a noisy

comparison between the displayed emotion or color and a criterion. For emotion and color decisions separately, we fitted the data with the

simplest model (model 0) that could account for each subject’s decisions using a noisy, ‘signal detection’-like psychometric model, to which

we included a lapse rate to account for random guessing:

P(anger) = ɸ[u_emo*x_emo + b_emo ]*(1-ε)+ε

P(violet) = ɸ[u_colr*x_colr + b_colr ]*(1-ε)+ε

where P(anger) and P(violet) correspond to the probability of judging the face as angry or violet, respectively, ɸ(.) to the cumulative normal

function, u_emo and u_colr to the perceptual sensitivity to the displayed emotion or color, x_emo and x_colr to the a trial-wise array of ev-

idence values in favor of anger (emotion intensity in the stimulus) or of violet (color intensity in the stimulus) (from 0 for neutral to +7 for an

intense display), b_emo and b_colr to an additive, stimulus-independent bias toward one of the neutral/anger or gray/violet choices, and ε to

the proportion of random guesses among the choices. Parameters were estimated by minimizing the model’s negative log likelihood using

the fmincon function in MATLAB. The bias parameter had an initial value of 0 and was constrained between�7 and +7; the sensitivity param-

eter had an initial value of 1 and was constrained between 0 and 10; the lapse rate parameter had an initial value of 0.2 and was constrained

between 0 and 0.8. Sensitivity (u_emo,u_colr) and bias (b_emo, b_colr) parameters computed with thesemodels were then compared using
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t-test analyses. We also assessed ‘‘interference" effects between stimulus dimensions by examining whether the decision-irrelevant stimulus

dimension (i.e., emotion intensity in color decisions, and color intensity in emotion decisions) influenced the processing of decision-relevant

cues.

Drift-diffusion models for behavioral data

To better understand the difference in decision bias parameters and reaction times between the Emotion and the Color tasks (see behavioral

results), we fitted DDMs choices and RTs distributions using the Python package HDDM.101 HDDM implements a Bayesian hierarchical esti-

mation of DDMparameters at the individual and group level usingMarkovChainMonteCarlo (MCMC) sampling. To fit themodels, responses

were coded ‘‘Angry/Violet’’ responses and ‘‘Neutral/Gray’’ responses during the Emotion and Color tasks, respectively. The task (Emotion vs.

Color), the continuous intensity level (centered, �3.5 to 3.5 in eight steps), and their interaction were fitted as regression parameters in the

DDMs. To improve the interpretability of the parameter estimates, we adopted a cell designmatrix estimating one parameter (a, v, z or t0) for

each task, and the effect of intensity on each of them.

Eight models were run to understand the influence of task type and intensity level on decision. First, we ran 7 models to test the effect of

task and intensity on drift rate (v), threshold (a), and non-decision time (t0) individually or in combination. In all these models, we estimated

separate bias (z) parameters by task. Finally, we tested whether the best-fitting model in the first step of model selection was improved by

removing the effect of task on the bias parameter. Due to the moderate number of trials per condition, we simplified the models in several

ways: the boundaries of the model were associated with ‘‘Angry/Violet’’ (upper threshold) and ‘‘Neutral/Gray’’ responses (lower threshold),

regardless of whether they required a left or right button press (correspondence was counterbalanced across participants, but stable within

participants); furthermore, the inter-trial variabilities were fixed to zero, since a proper fit of these parameters is particularly challenging, espe-

cially with small to medium-sized trials number.102–104

Models were compared using their Deviance Information Criterion (DIC) and Bayesian Predictive Information Criterion (BPIC) values.105

Further analyses were performed on the best-fitting model (i.e., lower DIC and BPIC). We based inference on the 95% credible intervals

(95%CrI) of the group-level parameters, defined as the interval between the 2.5th and 97.5th quantiles of the estimates’ posterior distributions

(or the posterior distribution of the parameter differenceswhen testing for them).We considered a parameter (or a difference) to be credible if

the 95%CrI did not overlap with 0 (or 0.5 in the case of the starting point bias, i.e., a perfectly equidistant point between the two response

boundaries). MCMC sampling was generated using 3 chains of 5000 iterations each (1500 of which were used as a burn-in period). Detailed

information about model diagnostic can be found in supplementary text.

EEG acquisition and pre-processing

EEG was recorded continuously from 64 scalp sites with CMS/DRL reference electrodes using a BioSemi headcap with active electrodes. The

EEG signal was amplified using an ActiveTwo AD-box amplifier (BioSemi), low-pass filtered online (250 Hz) and digitized at 1000 Hz. Raw EEG

data were pre-processed using the Brainstorm toolbox for MATLAB.106

First, raw EEG was recalculated to average reference, down-sampled to 500 Hz (2 ms steps), and band-pass filtered between 1 and 40 Hz.

Second, EEG data were visually inspected to removemuscle artifacts and to identify noisy electrodes, which were interpolated to the average

of adjacent electrodes. Third, independent component analysis (ICA) excluding interpolated electrodes was performed on the continuous

data and ICA components capturing eye blink artifacts were rejected. These EEG data were then epoched from 2s before to 2s after the

face stimulus onset (20 ms steps) and linearly de-trended. Epochs containing activity exceeding a threshold of +/� 70 mV were automatically

discarded. Finally, the resulting individual epochs were visually inspected to manually exclude any remaining trials with artifacts. After trial

rejection, the remaining trials averaged 975 G 46 trials per subject. The resulting data were resampled to 100 Hz (10 ms steps) from

500 ms before to 1.5s after stimulus onset.

Time-frequency decomposition was also performed using a Brainstorm Toolbox pipeline. Time-frequency representations (TFRs) of indi-

vidual trials were computed for each subject. The Morlet Wavelet transformation with 3-s time resolution at the central frequency 1 Hz (as

calculated by the full width at half maximum; FWHM) was used to calculate spectral power estimates at each point of the time-frequency win-

dow ranging from -2s to 2s (20ms steps) in the time domain and 1 to 40 Hz (1 Hz steps) in the frequency domain. TFRs were baseline corrected

with respect to the power averaged over the entire epoch.

EEG analyses

Neural encoding of emotion and color intensity

To test Hypothesis 1 of an earlier selective neural encoding of threat-related information during the emotion vs. the color task, generalized

linear regression models (GLM) were used, where emotion or color strength (from 0 for a neutral expression/gray to 7 for an intense anger

expression/violet) was introduced as a trial-per-trial predictor of broadband EEG signals at each electrode and time point following stimulus

presentation.36,107 We added the choice as an additional regressor to control for participants’ subsequent detection reports (detection of

violet in the color task, detection of anger in the emotion task) on a trial-by-trial basis. The corresponding parameter estimates of the regres-

sion, reported in arbitrary units, were calculated per participant, and then averaged across participants to produced group-level averages.

The resulting time course at each electrode of the parameter estimates represents the degree to which the EEG activity ‘encodes’ (co-varies
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with) the emotion or color strength provided by the morphed facial features or color intensity. The strength of this neural encoding– indexed

by the amplitude of the parameter estimate– provides a measure of the neural sensitivity to emotion or color strength.

We conducted this analysis separately for the emotion task (regressor: emotion intensity) and the color task (regressor: color intensity) and

performed a multiple comparison correction on one-sample t-tests comparing parameter estimates against zero (null effect), to isolate the

electrodes and timepoints where neural encoding of intensity was significant (Table 1). To do so, we used Fieldtrip’s multiple comparison

analysis,108 using theMonteCarlomethod to calculate the probability of significance, dependent sample T-statistics, cluster corrections (clus-

teralpha = 0.005, cluster statistic =maxsum, correct tail = prob, number of permutations = 1500).We also conducted this multiple comparison

analysis on the difference between the parameter estimates for emotion encoding and color encoding (see Table 1). Finally, to test our Hy-

pothesis 3a, we did the same analysis for emotion encoding in the emotion task, this time isolating facial expressions with a direct gaze and

those with an averted gaze (see Table 2). As in the emotion vs. color tasks, here we corrected for multiple comparisons for the effects against

zero, and for the differences between the two conditions (gaze direct vs. gaze averted).

Prediction of choice with motor lateralization

To test hypothesis 2, we assessed whether and when the detection of choice can be predicted by the motor lateralization activity in the mu-

alpha (8–12 Hz) and -beta (12–32 Hz) frequency bands (30). To compute themotor lateralization activity, we first isolated effector-selective (left

vs. right hand) neural activity. Asmu-beta activity is known to be suppressed at response time in the hemisphere contralateral to the hand used

for response,31,62 we calculated the spectral power from 8 to 12 Hz or 12 to 32 Hz at response time for each electrode and time point for all

subjects, for both emotion and color decisions. The resulting response-locked mu-alpha or beta activity for the trials in which subjects re-

sponded with their right hand was then subtracted from that of trials in which subjects responded with their left hand. After averaging across

all subjects, the electrodes where themotor lateralizationwasmaximal at 200ms before response timewere identified at ’P3,’CP30,’C30 for the
left hemisphere and ’P4,’CP40,’C40 for the right hemisphere for both types of decisions. For emotion/color decisions, motor lateralization ac-

tivity specific to ‘anger’/’violet’ responses was obtained by subtracting contralateral from ipsilateral mu spectral activity (8-12 Hz or 12-32 Hz)

relative to the hand assigned to ‘anger’/’violet’ responses (counterbalanced across subjects), over effector-selective electrodes at each time

point for all subjects. We then performed a logistic regression to predict choice (Anger/Neutral in the emotion task, Violet/Gray in the color

task) with the trial-by-trial motor lateralization activity as predictor, and trial-by-trial reaction times as an additional regressor to isolate for

effects that are independent of participants’ fluctuations in response times and differences in RTs between the two tasks.

log

�
choiceðanger or neutralÞ
1 � choiceðanger or neutralÞ

�
= b0 + b1 $EEGlat idx + b2$RT

log

�
choiceðviolet or grayÞ
1 � choiceðviolet or grayÞ

�
= b0 + b1 $EEGlat idx + b2$RT

We extracted and plotted the parameter estimates of this regression over time (see Figure 3C) and compared the parameter estimates

predicting the response Anger with the parameter estimate predicting the response Violet at each time point using a paired samples t-test.

We corrected for multiple comparisons by randomly shuffling the pairings between responses and EEG signals 1000 times. Themaximal clus-

ter-level statistics (the sum of t-values across contiguous significant time points at a threshold level of 0.05) were extracted for each shuffle to

compute a ‘null’ distribution of effect size across the [-200, +1100]ms timewindow. For the significant cluster in the original data, we computed

the proportion of clusters in the null distribution whose statistic exceeded that obtained for the cluster in question, corresponding to its ‘clus-

ter-corrected’ p.

To test our hypothesis 3b, we predicted the response ‘anger’ with the motor preparation measure in the mu-alpha band on the mean ac-

tivity of the isolated significant cluster from 240 ms to 380 ms, separately for direct and averted gaze.
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