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Abstract

This chapter is dedicated to theories for the mechanical analysis of struc-
tures. An overview of the literature is given based on classical and advanced
theories. A general classification is first introduced concerning displacement
or mixed models, asymptotic or axiomatic approaches and Equivalent Sin-
gle Layer or Layer-Wise modeling techniques. The proposed classification
pertains to beam, plate and shell models. Classical theories and advanced
ones are subsequently presented with precise description of the underlying
hypotheses. For the sake of conciseness, the mathematical description is
limited to plate structures and beam theories are briefly discussed in the
Appendix. Some numerical results are given for layered and sandwich struc-
tures with respect to linear bending, free vibration and buckling analyses.
The model assessment allows to define applicability ranges and limitations
of these theories.
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1. Introduction and classification

Laminated and sandwich structures. Composite structures allow to optimize
the design of mechanical components by offering the possibility of tailoring
the distribution of materials with different mechanical properties inside the
loading paths. Two major classes of composite structures can be identified:
Composite laminated structures are formed by stacking plies made out of
a composite material with a specific fiber orientation; Sandwich structures
classically consist of a core made of a rather bulk, light-weight and compli-
ant material that is “sandwiched” between two rather thin but stiff faces
or “skins”, that may be composite laminates. The main property of sand-
wich structures is their enhanced specific bending stiffness. A perfect bond
between the different materials composing the composite structure avoids
interfacial slips and assures the continuity of the loading path. Throughout
this chapter, composite structures are thus considered as a perfectly bonded
stack of homogenous, anisotropic materials.

Beam, plate and shell models. Any structure is a three-dimensional solid,
whose behavior is mathematically described by three-dimensional governing
equations for the problem to be considered, that include field equations as
well as boundary and initial conditions. Since the solution of the three-
dimensional problem is in general a cumbersome task, a reduced model is
often invoked for representing the functional response of the structure. These
structural models are essentially suggested based on the geometry of the con-
sidered structure; the behavior along directions whose geometric dimensions
are small compared to others is hereby no longer resolved within the three-
dimensional equations, but it is instead represented in a simplified manner.
So, shell models are formulated for structures having one dimension (the
thickness) much smaller than two in-plane dimensions characterizing the ref-
erence surface: the response across the thickness direction is then reproduced
by means of a simplified model whose parameters are taken to vary along the
two directions defining the reference surface. Shell models are therefore two-
dimensional models. In an analogous manner, beam models are formulated
upon describing in a simplified manner the response within the cross-section,
whose dimensions are much smaller than the length of the segment perpen-
dicular to it representing the beam axis. The behavior of the cross-section is
then defined by parameters that are taken to vary only along the beam axis,
i.e., a one-dimensional model is considered. If the shell’s reference surface
has no curvature, the shell model degenerates to a plate model. In general, a
curved structure is characterized by a ratio between length and radius, which
defines its “deepness” or “shallowness”, see Fig. 1. In the literature, models
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could be classified as shallow or deep shell models with respect to this ratio,
introducing simplifications on the curvature radius in the strain expressions
[1]. In particular, a shallow shell could be considered “like a plate” as far as
the transverse shear strain components are concerned.

Figure 1: Geometry of curved beams of constant span-to-thickness ratio L/h: from shallow
to deep.

The pertinence of a structural model can be defined by its capability of
capturing with a satisfying accuracy the relevant mechanical response of the
real three-dimensional structure. One may identify a membrane, bending and
torsion or twisting response, depending on the loading path of the structure,
which is in turn determined by geometric considerations and constitutive
behaviors. Moreover, the critical design criteria may be related to stiffness
or strength: the relevant response may be, in the first case, a displacement or
a frequency, in the second case a strain or stress. Therefore, the accuracy of
structural models, that is, their capability to correctly reproduce the three-
dimensional behavior, depends not only on the geometric ratios of the actual
structure, but also on the wavelength of the response to be investigated. This
consideration yields two important conclusions; on the one hand, it is clear
that the model accuracy depends on the considered problem, in particular
on the loading conditions and which is the mechanical response of interest
(displacement or stress, a fundamental or high frequency); on the other hand,
it may be anticipated that, in comparison to homogeneous structures, the
response’s wavelength along the stacking direction of composite structures is
shorter due to the material discontinuity.

Asymptotic or axiomatic approaches. Two main approaches have been pro-
posed to derive structural models from the three-dimensional elasticity the-
ory. The axiomatic approach consists in postulating the simplified behavior,
the “a priori assumptions”, on the basis of empirical evidence or mechanical
insight about the functional response of interest. For instance, Leonardo da
Vinci early observed that cross sections of a straight beam in pure bend-
ing remain plane and perpendicular to the beam axis [2]; this observation
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permits to postulate some kinematical hypotheses that simplify the three-
dimensional equations. As a further example, it may be reasonably assumed
that the out-of-plane normal stress within a thin plate be negligibly small
compared to the primary bending stresses [3]. This assumption allows to
formulate some simplifying hypotheses concerning the static response.

Despite this approach has been widely employed over the last centuries, it
cannot in general provide a mathematically sound relationship with respect to
the three-dimensional behavior. In other words, it is not possible to provide a
measure of the error introduced by the simplifying hypotheses and, therefore,
to define the range of applicability of the simplified model.

The asymptotic approach can be seen as a step towards the resolution of
this drawback. In this approach, the three-dimensional behavior is described
mathematically as a series expansion in terms a dimensionless “small param-
eter” δ that contains the physical characteristics of the structure considered
for the model reduction. In curved beam and shell structures, this parameter
is often defined as the ratio between the thickness and the curvature radius,
in straight beams and plates as the ratio between the thickness and the span.
The reduced model is then constructed upon truncating the resulting system
of equations up to a predefined order of the parameter. This way, successive
approximations are possible, which allows to introduce higher-order terms (in
the asymptotic sense) that have a controlled contribution to the structural be-
havior. Moreover, the derived model exactly recovers the three-dimensional
solution for δ → 0. The works by Gol’denveizer [4, 5] and Cicala [6] can
be mentioned for referring to comprehensive examples for this approach to
homogeneous plates and shells. An asymptotic approach to beam structures
can be found in [7]. While the aforementioned “formal” asymptotic approach
manipulates directly the three-dimensional differential equations, an alterna-
tive method introduces asymptotic expansions within variational forms, see,
e.g., [8]. This latter method has certain advantages, in particular with re-
spect to its application to composite structures and anisotropic materials,
see, e.g., [9, 10]. It is worthwhile noticing that the classical plate model for-
mulated by Kirchhoff through a priori assumptions could be mathematically
justified by means of the asymptotic approach [11].

Displacement or mixed models. In the framework of the most widespread
axiomatic approach, once the simplified field distributions have been formu-
lated, the structural model is derived by referring to variational formulations,
in particular energy principles or, more generally, virtual work principles [12].
So, the principle of minimum of potential energy, or principle of virtual dis-
placements (PVD), is invoked in conjunction with an assumed displacement
field (kinematic assumptions), whereas the principle of minimum comple-
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mentary energy is invoked along with an assumed stress field (static assump-
tions). The former case leads to a so-called displacement-based model, the
latter case to a stress-based model. In order to enhance the model’s accuracy,
mixed approaches have been proposed that allow to introduce simultaneously
approximations for both, the displacement and the stress fields [13]. Reiss-
ner proposed a mixed variational principle expressly dedicated to composite
structures, in which independent approximations can be introduced for the
displacement field and the transverse stresses acting along the stacking di-
rection [14]. This way, the transverse stress field can be chosen so to exactly
fulfill the equilibrium between plies as well as at the outer surfaces of the
structure by an exact balance with the applied loads [15].

ESL or LW developments. The formulation of axiomatic models for com-
posite structures requires to select whether the simplifying assumptions are
introduced for the whole materials’ stack or for different constituting layers
independently. The former case amounts to a direct application of the clas-
sical axiomatic approaches, early developed for homogeneous structures, to
the heterogeneous composite stack. The behavior of the structural model is
here defined by unknown functions that vary along one given reference line
(at a given point of the cross-section) for beams, or along a given reference
surface (at a given height across the thickness) for shells/plates. This kind
of description is usually referred to as Equivalent Single Layer (ESL) for it
homogenizes the composite stack to one single material layer, whose proper-
ties are evaluated from the material constants and geometry of the individual
plies. In ESL models, the number of unknown functions is thus independent
from the actual number of plies constituting the composite structure and
it depends only on the order of the approximation that is introduced. A
different approach consists in introducing the approximations independently
for all individual plies constituting the composite stack; the individual layer
models are subsequently assembled for satisfying the interlaminar continu-
ities that reproduce the perfect bond conditions. This so-called Layer-Wise
(LW) description allows an explicit representation of the individual stiffnesses
of the plies and of their interfaces, but the number of unknown functions de-
scribing the structural model does depend on the number of layers that have
been separately modeled. Alternatively, still starting from independent ap-
proximations in separate layers, the interlaminar continuity conditions can
be exploited so to eliminate the layer-specific unknown functions and thus
recovering a structural model whose number of unknown functions is inde-
pendent from the actual number of layers: this class of models is generally
referred to as Zig-Zag models. The authors refer to the historical note [16]
for a comprehensive discussion about Zig-Zag models.
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Numerical methods and errors. Once the structural model derived, the so-
lution is sought in a reduced dimensional space, i.e., in one dimension for a
beam model and in two dimensions for a shell/plate model. An exact solu-
tion, that verifies in strong form all equations of the boundary value problem,
can be found for some simple academic cases. If an exact three-dimensional
elasticity solution is also available, these simple case studies are valuable for
they allow to numerically assess the accuracy of the structural model itself.
In most cases, however, no exact solution can be found and it is necessary
to resort to approximate, numerical solution methods. In the framework of
the finite difference method, the governing equations of the boundary value
problem are discretized, and subsequently solved in strong form. An alter-
native and more powerful approach is to look for weak form solutions, i.e.,
approximate solutions that satisfy in “some sense” the original boundary
value problem upon minimizing in a weighted manner their residual with re-
spect to the exact solution. The Finite Element Method (FEM) is by far the
most widespread representative for these weighted residual methods [17]. In
either case, these numerical solutions come in general with a discretization
error in addition to the modeling error.

2. Preliminaries

The main focus of this chapter is on composite plate and beam models,
for which the intrinsic parameters driving the model’s accuracy will be es-
sentially the thickness (plates) or the cross-section geometry (beams), and
the material properties. As mentioned in the Introduction, shell models will
require to consider the effect of curvature as well. Classical and advanced
plate models will be formulated within the axiomatic approach upon intro-
ducing a priori assumptions for the displacement field. This preliminary
section introduces the fundamental quantities describing the behavior of a
three-dimensional composite structure along with the notation that shall be
employed throughout the Chapter. Furthermore, it presents the general path
to be followed for deriving the axiomatic displacement-based models, which
holds for both the classical and advanced theories. The proposed notation
will be directly particularized to beam models in Appendix A.

A Cartesian reference frame (O, ~x1, ~x2, ~x3) is introduced for the mathe-
matical description of the structure. Let the composite plate be composed
of Np plies and occupy the volume V = Ω×

[−h
2
, h

2

]
, where Ω is the reference

surface in the (x1, x2)-plane and h =
∑Np

p=1 h
(p) is the thickness measured

along the x3 coordinate. The thickness is taken to be constant over Ω. The
plate’s boundary ∂V = Γ = Γlat∪Γ± is composed of Γlat = ∂Ω×

]−h
2
, h

2

[
and
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Γ± = Ω×
{−h

2
, h

2

}
. Further, let the boundary be subjected to geometric con-

straints (imposed displacements) on the portion Γu and to static constraints
(imposed surface loading) on Γt, with Γu ∪ Γt = Γ and Γu ∩ Γt = ∅.

2.1. Strain, stress and constitutive relation

At any time instant t and in any point of the solid structure, the stress
and strain fields are defined by the second-order tensors σij(x1, x2, x3; t) and
εij(x1, x2, x3; t), respectively, with i, j ∈ {1, 2, 3} corresponding to the three
orthogonal directions xi of the Cartesian reference frame. Throughout this
chapter reference is made to infinitesimal deformations, the following geo-
metrical relations are thus supposed to hold between the strain components
and the displacement field ui(x1, x2, x3; t):

εij =
1

2

(
ui,j + uj,i

)
(1)

where the notation ui,j indicates the partial derivative of the component ui
with respect to the xj direction. By virtue of the symmetry of the stress and
strain tensors, the compact Voigt-Kelvin notation is adopted according to

σ1 = σ11; σ2 = σ22; σ3 = σ33; σ4 = σ23; σ5 = σ13; σ6 = σ12 (2)

ε1 = ε11; ε2 = ε22; ε3 = ε33; ε4 = γ23; ε5 = γ13; ε6 = γ12 (3)

with γij = 2εij (i 6= j) denoting the engineering shear strains. The consti-
tutive link between the strain and the stress fields depends on the material
properties of the ply (p) and is expressed for linear elasticity by the general-
ized Hooke’s law

σ
(p)
ij = C

(p)
ijklεkl (i, j, k, l ∈ {1, 2, 3}) or σ(p)

p = C(p)
pq εq (p, q ∈ {1, 2 . . . 6})

(4)
where the last expression employs the compact notation according to which
C

(p)
pq is the 6-by-6 matrix of elastic stiffness coefficients of the material consti-

tuting the ply (p). A composite material ply is described as a homogeneous
medium with orthotropic symmetry in its principal material axes Xi, where
X1 is the fiber direction and X2 and X3 the transverse directions. Limiting
the attention to constant stiffness composite materials, for which the fiber
direction X1 is independent from the spatial coordinates, the orientation of
the fibers of each ply is defined by a rotation angle θ(p) about the transverse
direction X3. According to this transformation, the composite material will
possess a monoclinic symmetry in the structural reference frame xi, and the
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rotated elastic stiffness matrix C
(p)
pq will have the following general form:

C(p)
pq =



C
(p)
11 C

(p)
12 C

(p)
13 0 0 C

(p)
16

C
(p)
22 C

(p)
23 0 0 C

(p)
26

C
(p)
33 0 0 C

(p)
36

C
(p)
44 C

(p)
45 0

sym C
(p)
55 0

C
(p)
66


(5)

2.2. Construction of the two-dimensional model

According to the displacement-based axiomatic approach, a priori as-
sumptions are introduced for the displacement field upon making explicit its
dependence along the thickness direction x3 = z. The assumptions may thus
be formally written as

ui(x1, x2, z; t) = Fsi(z)ũsi(x1, x2; t) with si = 0, 1, 2, . . . Ni (6)

where the Ni functions Fsi(z) contain the kinematic assumptions for the dis-
placement component ui. Note that Einstein summation convention over
repeated indexes is employed. A powerful means for constructing the dimen-
sionally reduced model makes use of integral expressions related to physically
sound variational formulations [17]. The Principle of Virtual Displacements
extended to dynamics problems is Hamilton’s principle:∫ t2

t1

{∫
V

ρ
∂2ui
∂t2

δui dV −
∫
V

bi δui − σij δεij dV +

∫
Γt

ti δui dΓ

}
dt = 0

(7)
where ρ is the specific mass, while bi and ti are the body forces in V and
imposed tractions on Γt, respectively. The symbol δ denotes the virtual
operator, which for Hamilton’s principle acts on an admissible displacement
field, i.e., the virtual variations of the assumed displacement field are required
to verify the geometric strain-displacement relations Eq. (1) as well as

δu(xi, t) = 0 ∀xi ∈ Γu, t ∈ [t1, t2] and ∀xi ∈ V, t ∈ {t1, t2} (8)

The analysis shall be further restricted to hyperelastic materials, for which
Eq. (4) holds throughout the dynamic deformation: substitution of Eq. (4)
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and Eq. (1) into Eq. (7) yields∫ t2

t1

{∫
V

ρ
∂2ui
∂t2

δui dV

−
∫
V

bi δui −
1

4
Cijkl

(
∂uk
∂xl

+
∂ul
∂xk

) (
∂δui
∂xj

+
∂δuj
∂xi

)
dV

+

∫
Γt

ti δui dΓ

}
dt = 0 (9)

where the sum is implied over i, j, k, l ∈ {1, 2, 3}.
The two-dimensional reduced model is thus obtained upon introducing

the assumption Eq. (6) into Eq. (9) and carrying out explicitly all differen-
tiations and integrations with respect to the coordinate z. The integration
over the thickness h is hereby split over the Np ply thicknesses to account
for the ply-specific material properties, viz.∫

V

(. . .)dV =

∫
Ω

[∫
h

(. . .)dz

]
dx1dx2 =

∫
Ω

[
Np∑
p=1

∫
h(p)

(. . .)dz

]
dx1dx2 (10)

The Euler-Lagrange equations of Hamilton’s principle, i.e., the conditions to
be verified for satisfying the integral statement in Eq. (7) for any virtual
variation of the admissible displacement field, correspond to the dynamic
equilibrium equations of the body and the equilibrium with the imposed
tractions on Γt. Once the coordinate z eliminated by the integration over the
thickness h of the plate, the governing equations are hence the variationally
consistent equilibrium equations defined over the two-dimensional domain Ω.

2.3. Solution methods for the two-dimensional model

Approximate solution methods, such as Ritz method or FEM, introduce
approximating “shape” functions N (x1, x2) over the two-dimensional domain
Ω for each term of the displacement assumption Eq. (6):

δũri(x1, x2; t) =

Mri∑
mri=1

Nmri (x1, x2) δUmri (t) (11a)

ũsj(x1, x2; t) =

Msj∑
nsj=1

Nnsj (x1, x2)Unsj (t) (11b)

where ri = 0, 1 . . . Ni and sj = 0, 1 . . . Nj with i, j = 1, 2, 3. Each unknown
function ũsj(x1, x2; t) is thus expressed in terms of Msj degrees of freedom
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(DOF). Eq. (11) are directly introduced into the integral form of the equilib-
rium equations as they arise from the two-dimensional variational statement.
All spatial derivations and integrations over the two-dimensional domain Ω
are subsequently carried out explicitly, which eventually leads to the discrete
system of Ordinary Differential Equations in time of the following form:

δUm : MmnÜn(t) +KmnUn(t) = Fm(t) (m,n = 1 . . .M) (12)

where Mmn and Kmn are the mass and stiffness matrix, respectively, which
are square and symmetric. The size of the system is M ×M , where M is the
sum of all DOF used to represent the complete displacement field, viz.

M =
3∑
i=1

Nj∑
sj=0

Msj (13)

The solution of the dynamic problem is generally found by means of numerical
time-integration algorithms, such implicit or explicit Euler methods [18]. A
free-vibration problem is obtained from the above expression upon assuming
a harmonic response Un(t) = Un e

iωt and setting the external force to zero:
Fm = 0, which yields [

Kmn − ω2Mmn

]
Un = 0 (14)

Research for a non-trivial solution leads to the solution of the eigenvalue
problem

det
[
Kmn − ω2Mmn

]
= 0 (15)

which determines the M eigenfrequencies f = 2πω and the associated M
vibration modes defined by the corresponding eigenvectors.

For an exact solution of the dimensionally reduced plate problem, the
two-dimensional integral statement of the variational equation is first ma-
nipulated for deriving the strong form of the governing equations, i.e., the
equilibrium equations and the static boundary conditions. An exact solution
is thus sought for the differential equation systems (two-dimensional Partial
Differential Equations in space and Ordinary Differential Equation in time).
The Navier-type solution employed on some numerical results of Section 7,
is a strong-form solution based on trigonometric functions over Ω that holds
for square, orthotropic composite stacks with simply-support boundary con-
ditions at its four edges.

2.4. Bifurcation buckling

Bifurcation buckling is studied as the research of an adjacent configura-
tion a body arrives at upon a small perturbation from an initially stressed
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state [12]. The incremental elasticity problem is formulated in terms of in-
cremental Trefftz stress measures, Green-Lagrange finite strain measures and
constant elasticity moduli [19]. The attention is limited to the lateral (out-
of-plane) buckling of in-plane compressed plates, and a linearization is per-
formed upon assuming that the plate remains flat (undeformed) at the ini-
tially stressed state. The variational statement for this linearized stability
analysis reads ∫

V

δεij Cijklεkl + (δui,α)λσ0
αβui,β dV = 0 (16)

The critical load is thus given by the scalar parameter λ that multiplies
the initial in-plane stress state σ0

αβ (α, β ∈ {1, 2}) and for which a non-
trivial adjacent equilibrium condition exists. The initial stress is seen to be
energetically conjugate to the non-linear term of the in-plane, finite Green-
Lagrange strains:

δui,α ui,β = δ

(
1

2
ui,αui,β

)
(17)

In conjunction with slender structures such as beams or shells/plates, the
non-linear strains defined in Eq. (17) are often simplified according to von
Kàrmàn assumption of large rotations and small strains as follows:

δui,α ui,β ≈ δu3,α u3,β (18)

The two-dimensional plate model is again obtained upon assuming the
dependence upon the thickness coordinate x3 = z through the displacement
approximations Eq. (6), and subsequently carrying out explicitly all deriva-
tives and integrations with respect to z. More details can be found in [20],
where the equations for the linearized buckling analysis are formulated and
solved within a three-dimensional elasticity framework as well as following
the approximate plate model approach. As a result, the following linear
eigenvalue problem is obtained from Eq. (16) in terms of discrete DOF:

det [Kmn + λKσ
mn] = 0 (19)

where Kmn is the linear stiffness matrix issued from the first term in Eq.
(16) and Kσ

mn is the geometric stiffness matrix associated to the initial stress
field. The eigenvalues correspond to the critical load of the plate, the lowest of
which is the buckling load. The eigenmode associated to the lowest eigenvalue
corresponds to the buckling mode.

Some final comments follow. First, it is worth emphasizing that the
linearization of the bifurcation buckling analysis neglects the membrane-
bending coupling of anisotropic laminates for it supposes the out-of-plane
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deflection of the initially stressed configuration to be nil. As a consequence,
some conditions on the in-plane loading and edge conditions should be veri-
fied for permitting a linear bifurcation buckling analysis of general anisotropic
plates [21]. Second, contrary to laminated plates, instability of compressed
sandwich plates can involve the whole sandwich plate (global buckling),
mainly the core (shear crimping) or mainly the skins (dimpling and wrin-
kling) [22]. The nature of the buckling response of sandwich structures de-
pends on both, the gross panel’s dimensions and the geometric and material
ratios between skins and core, see also [23]. Dimpling and wrinkling modes
are characterized by a very short wavelength along the in-plane directions
x1, x2; some model assessments in Section 7 will address this short wave-
length response.

3. Classical theories: CLPT and FSDT

This section presents the fundamental equations of the classical plate the-
ories formulated within the axiomatic, displacement-based approach outlined
in the previous Section. Classical theories are the Classical Laminated Plate
Theory (CLPT) and the First-order Shear Deformation Theory (FSDT), the
difference being in the way transverse shear strain is accounted for. These
theories rely on an ESL description and are essentially a straightforward ap-
plication to composite plates of theories formulated for homogeneous plates.
For an exhaustive presentation of CLPT and FSDT reference can be made
to Reddy’s book [24].

3.1. Classical Laminated Plate Theory

The CLPT is an application to composite plates of the classical thin plate
theory originally developed for homogeneous plates. It can be axiomatically
formulated based on the following a priori assumptions [3]:

1. Kinematic assumption: fibers that are straight and perpendicular to the
reference surface of the undeformed plate, remain straight and perpen-
dicular to Ω during deformation (Kirchhoff’s assumption).

2. Static assumption: the transverse normal stresses are negligibly small
compared to the bending stresses.

Kirchhoff’s assumption means neglecting the transverse shear deformation of
the plate:

ε4 = u3,2 + u2,3 = 0 ε5 = u3,1 + u1,3 = 0 (20)

On the other hand, within a displacement-based approach, the static as-
sumption requires to be recast in a kinematic relationship through the use
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(a)

(b)

(c)

(d)

z

xα

z, u3
−dũ03

dxα

ũ0α

−dũ03

dxα

(uα, u3)

(ũ0α , ũ03)

−dũ03

dxα

(ũ0α , ũ03)

(ũ0α , ũ03)

(uα, u3)

(uα, u3)

−dũ03

dxα

ũ1α

ũ1α

Figure 2: Transverse normal fiber in its undeformed configuration (a), and in the deformed
configuration according to three different kinematics: (b) CLPT; (c) FSDT; (d) HSDT.
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of the constitutive stress-strain relation. Imposing the condition σ3 = 0 into
Hooke’s law Eq. (4) of the composite plate yields

ε
(p)
3 = −C

(p)
13

C
(p)
33

ε1 −
C

(p)
23

C
(p)
33

ε2 −
C

(p)
36

C
(p)
33

ε6 (21)

and the following plane stress constitutive relation:σ
(p)
1

σ
(p)
2

σ
(p)
6

 =

Q
(p)
11 Q

(p)
12 Q

(p)
16

Q
(p)
22 Q

(p)
26

sym Q
(p)
66


ε1ε2
ε6

 (22a)

where Q
(p)
pq (p, q ∈ {1, 2, 6}) are the “reduced” stiffness coefficients of the ply

(p) defined as

Q(p)
pq = C(p)

pq −
C

(p)
p3 C

(p)
q3

C
(p)
33

for p, q ∈ {1, 2, 6} (22b)

Note that, by virtue of the monoclinic symmetry of each ply, see Eq. (5),
setting to zero the transverse shear strains corresponds to let the transverse
shear stress be nil as well. The kinematic assumption expressed by Eq.
(21) means that the transverse normal strain is independent from the out-
of-plane deflection u3, which can hence be assumed as independent from the
z−coordinate, recall Eq. (1). With reference to the generic assumptions
expressed by Eq. (6), one may thus set

N3 = 0 with F03(z) = 1 (23a)

Furthermore, the vanishing of the transverse shear strains postulated by
Kirchhoff’s assumption Eq. (20) means that the transverse fiber rigidly ro-
tates about the x1 and x2 directions, and that this rotation is directly linked
to the slope of the reference surface, see Fig. 2 (b). With reference to Eq.
(6) these relations are satisfied by setting for the in-plane displacements uα

Nα = 1; F0α(z) = 1, F1α(z) = z with α ∈ {1, 2} (23b)

along with the normality condition of Kirchhoff’s assumption

ũ1α = −u3,α (23c)

The displacement field of the CLPT has, hence, the following form:

uα(x1, x2, z; t) = ũ0α(x1, x2; t)− z ∂ũ03(x1, x2; t)

∂xα
(α ∈ {1, 2}) (24a)

u3(x1, x2, z; t) = ũ03(x1, x2; t) (24b)
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with three unknown functions defining the displacement vector of a generic
point of the reference surface Ω: two functions ũ0α(x1, x2; t) define the mem-
brane deformation and only one function ũ03(x1, x2; t) defines the bending
deformation. In view of a FEM approximation, a drawback of the CLPT is
its need for a C1−continuous interpolation of the transverse displacement.

3.2. First-order Shear Deformation Theory

The a priori assumptions of FSDT read as follows:

1. Kinematic assumption: fibers that are straight and perpendicular to
the reference surface of the undeformed plate, remain straight but not
necessarily perpendicular to Ω during deformation.

2. Static assumption: the transverse normal stresses are negligibly small
compared to the bending stresses.

The first assumption relaxes the normality condition of Kirchhoff’s assump-
tion; FSDT enhances CLPT upon including a shear deformation that is con-
stant (i.e., first order) with respect to the thickness coordinate. The static
assumption σ3 = 0 is still retained. Therefore, the relation Eq. (21) still
holds and the constitutive equation to be used is Eq. (22) complemented by
the transverse shear terms[

σ
(p)
4

σ
(p)
5

]
=

[
Q

(p)
44 Q

(p)
45

sym Q
(p)
55

] [
ε4
ε5

]
(25)

In order to instantiate the general displacement assumptions Eq. (6) for the
FSDT case, it is first noticed that the plane stress assumption yields the
same approximations given in Eq. (23a) for the out-of-plane displacement
u3. Furthermore, a transverse shear deformation that is constant across
the plate thickness means that the normal fiber still remains rigid, which is
expressed by Eq. (23b). However, the rotation about the xα directions is no
longer directly related to the slope of the reference surface, i.e., the unknown
functions ũ1α(x1, x2; t) associated to the linear term F1α are now additional
independent functions, see Fig. 2 (c). By denoting ϕα the positive rotations
about the axis xα, one has ũ12 = ϕ1 and ũ11 = −ϕ2. The displacement field
of the FSDT has thus the following expression:

uα(x1, x2, z; t) = ũ0α(x1, x2; t) + z ũ1α(x1, x2; t) (α ∈ {1, 2}) (26a)

u3(x1, x2, z; t) = ũ03(x1, x2; t) (26b)

The following expression is obtained for the transverse shear strains, that
turn out to be independent of z:

γα3(x1, x2, z; t) = ũ1α(x1, x2; t) +
∂ũ03(x1, x2; t)

∂xα
= γ0

α3(x1, x2; t) (27)
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The number of independent two-dimensional functions of FSDT is thus 5:
the 2 functions ũ0α define the membrane and 3 functions ũ1α , ũ03 the bending
deformation. An attractive feature of FSDT is that its FEM implementation
requires only C0 interpolations. However, a special treatment is needed for
the evaluation of the transverse shear deformation for avoiding the shear
locking pathology [25].

Numerical shear correction factors ksij < 1 with i, j ∈ {4, 5} should be
introduced in the computation of the transverse shear force, in order reduce
the transverse shear deformation energy that is overestimated by the first-
order approximation, for it violates the shear stress-free conditions at the
outer surfaces of the plate, viz. σ4 = σ5 = 0 at Γ±. For homogeneous plates
(ks45 = 0, ks44 = ks55 = ks) Reissner’s static approach yields the value ks = 5/6
for a bending problem [26], while Mindlin obtained the value ks = π2/12
by equating the approximate first antisymmetrical thickness-shear vibration
frequency to the exact solution [27]. However, the proper choice of these
numerical factors is actually problem-dependent [28–30].

4. Refined ESL theories

Due to their simplicity, the classical theories outlined in the preceding
section are the most widespread but, at the same time, their accuracy is
often limited. The following statement of Koiter can be taken as a valu-
able guideline for enhancing the model accuracy [31]: “A refinement of [. . . ]
first approximation theory is indeed meaningless, in general, unless the ef-
fects of transverse shear and normal stresses are taken into account at the
same time.” This section presents refined ESL theories according to the
following classification: (1) theories that enhance the approximation of the
transverse shear deformation of FSDT; (2) ESL models that meet the so-
called C0

z−Requirements [32], i.e., the piecewise continuous distribution of
displacement and transverse stress fields along the thickness direction z of
a composite stack, see Fig. 3; (3) theories including the transverse normal
stress, thus aiming at a consistent extension of the models to high-order
accuracy according to Koiter.

4.1. Higher-order Shear Deformation Theories

HSDT enhance the classical theories upon relaxing the kinematic assump-
tion that straight fibers remain straight during deformation, which means
that the normal fiber can warp during deformation. This is accomplished by
postulating a non-linear (high-order) distribution of the in-plane displace-
ment along the thickness direction of the whole composite plate, i.e., an ESL
description is still retained. The warping function should allow an at least
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σαβ σα3 σ33
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Figure 3: Typical distributions along the thickness satisfying the 3D elasticity equations:
in-plane stresses σαβ are C−1z , transverse shear stresses σα3 are C0

z , transverse normal
stress σ33 is C1

z , and displacements ui are C0
z .

quadratic distribution of the transverse shear stress in order to fulfill the
shear stress-free conditions at the plate’s top and bottom surfaces. This way,
shear correction factors are no longer required. The static assumption σ3 = 0
of classical theories is still retained. A general representation of the assumed
displacement field of an HSDT can be written as follows [33, 34]:

uα(x1, x2, z; t) = ũ0α(x1, x2; t)− z ∂ũ03(x1, x2; t)

∂xα

+ f(z)

(
ũ1α(x1, x2; t) +

∂ũ03(x1, x2; t)

∂xα

)
(28a)

u3(x1, x2, z; t) = ũ03(x1, x2; t) (28b)

where ũ1α + ũ03,α = γ0
α3 is the z-independent transverse shear deformation

of FSDT, see Eq. (27). Fig. 2 (d) illustrates a typical example of this high-
order kinematics with the warped normal fiber. Different theories can be
instantiated depending on the expression of the warping function f(z):

1. Classical theories are recovered as special cases by setting f(z) = 0 for
CLPT and f(z) = z for FSDT.

2. The so-called Sinus-theory [35] is a seminal example of the family of
trigonometric HSDT and is implemented by setting

f(z) =
h

π
sin
(πz
h

)
(29)

A mathematical justification for using the Sinus function is provided
in [36].
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3. The third-order theory [24, 37, 38] is formulated with

f(z) = z − 4z3

3h2
(30)

The third-order theory is the most representative example of polyno-
mial HSDT, in which the warping function is a polynomial development
in z.

The third-order theory accommodates a parabolic distribution of transverse
shear stress, whereas the Sinus theory implies a transverse shear stress that
varies as a Cosine across the plate thickness. The kinematics Eq. (28) yields
the following expression for the transverse shear strains:

γα3(x1, x2, z; t) =
df(z)

dz
γ0
α3(x1, x2; t) (31)

with

{
df(z)

dz
= cos

(
πz
h

)
Sinus theory

df(z)
dz

= 1− 4
(
z
h

)2
third-order theory

where γ0
α3 is the transverse shear strain of FSDT defined in Eq. (27). Note

that both theories automatically ensure zero transverse shear stresses at the
top and bottom surfaces of the plate (z = ±h/2). Furthermore, it should be
remarked that the number of unknown functions in both theories is equal to
5, the same number of unknown functions of FSDT. However, these HSDT
finite elements require – as CLPT-based elements – a C1 approximation for
the transverse deflection.

4.2. Zig-Zag theories

ZZT enhance the through-the-thickness response of composite structures
upon formulating a kinematics that can represent the slope discontinuity
of the in-plane displacements at interfaces between adjacent plies. In an
important reference paper, Carrera summarizes the major developments of
ZZT and identifies three independent paths for meeting the C0

z−requirements
[16]: Lekhnitskii Multilayered Theory (LMT), Ambartsumian Multilayered
Theory (AMT) and Reissner Multilayered Theory (RMT). In this section the
focus is set on AMT, the most widespread approach, and RMT that is the
most amenable to further extensions due to its simplicity.

Ambartsumian Multilayered Theory. A piecewise continuous displacement
field is constructed whose interlaminar continuity conditions are issued from
the continuity conditions of the transverse shear stresses. So, a priori as-
sumptions are postulated for the transverse stress field and converted to a
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kinematic field through the constitutive law, which is thus exactly verified
in this approach. The AMT extends FSDT upon replacing the kinematic
assumption with the following

1. Static assumption: The transverse shear stresses has a parabolic distri-
bution along the thickness of each ply.

As in the previously outlined theories, the first assumption calls for the use
of the plane stress constitutive law. The second assumption introduces a
number of parameters that depend on the number of plies, but these are ex-
plicitly determined through the continuity conditions of the transverse shear
stresses and of the displacement field. The resulting kinematics, not reported
here for the sake of brevity, has the same 5 unknown functions of FSDT and
does explicitly depend on the material parameters of the plies constituting
the composite plate. The dependence of the kinematics on the material pa-
rameters makes the extension of AMT to more complex material behaviors,
such as those involving multifield couplings, quite a cumbersome task. The
AMT approach is generally limited for postulating a zig-zag shape for the
in-plane displacements only; its extension to a piecewise continuous out-of-
plane displacement is not possible if the constitutive law is to be exactly
verified, because the Poisson coupling between the transverse stretch and
the in-plane deformations prevents the expression of a zig-zag kinematics.

Reissner Multilayered Theory. In RMT, independent assumptions are for-
mulated for displacement and transverse stresses by referring to Reissner’s
Mixed Variational Theorem (RMVT) [14]. The seminal formulation is due to
Murakami [39], who used the same static assumptions of AMT (σα3 parabolic
in each ply) in conjunction with the following kinematics:

uα(x1, x2, z; t) = ũ0α(x1, x2; t) + zũ1α(x1, x2; t) +MZZ(z)ũZZ α(x1, x2; t)
(32a)

u3(x1, x2, z; t) = ũ03(x1, x2; t) (32b)

The in-plane displacement field uα is thus approximated upon enhancing the
classical FSDT kinematics with the so-called Murakami Zig-Zag Function
(MZZF), which permits to introduce in a simple geometrical manner the
slope discontinuity at plies’ interfaces:

MZZ(z) = (−1)p ζp(z) with ζp(z) =
2

ztp − zbp

(
z − ztp + zbp

2

)
(33)

where ztp and zbp denote the top and bottom z−coordinates of the pth ply.
Fig. 4 illustrates the kinematics Eq. (32a) resulting from the superposition
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Figure 4: Kinematics resulting from the superposition of FSDT (membrane term ũ0α and
bending term ũ1α) and MZZF (amplitude ũZZα

of the Zig-Zag function).

of MZZF on an FSDT approximation. The integral of RMVT along the
thickness direction is carried out explicitly, which provides the weak form
of the equilibrium equations as well as the weak form of the constitutive
relationship for the composite plate linking transverse shear stresses and
displacement field. This “weak form of Hooke’s law” (i) automatically in-
corporates the necessary shear correction factors for the underlying FSDT
kinematics, and (ii) can be conveniently used to obtain a formulation in-
volving only unknown functions related to displacement variables, see also
[15]. The ZZT resulting from Eq. (32) has 7 unknown functions, i.e., the
5 functions of FSDT plus the 2 functions ũZZ α that define the amplitude
of MZZF. It is worth emphasizing that this approach can be extended in a
straightforward manner to transverse normal strains and complex material
behaviors because the constitutive relations are satisfied only in an integral,
variationally consistent sense [40, 41].

Later developments suggested to formulate ZZT by directly superimpos-
ing MZZF to a simple ESL kinematics within a classical displacement-based
approach [42]. In this “simple” approach no reference is made to the trans-
verse stress field that, as a consequence, does not verify the interlaminar
equilibrium nor the top and bottom conditions.

4.3. Theories including transverse normal stress

All previously discussed theories rely on the static assumption σ3 = 0
and make use of the plane stress constitutive law Eq. (22); this leads to a
model in which the through-thickness stretch is only a reactive deformation.
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This section discusses those advanced theories that, following Koiter’s rec-
ommendation, include the transverse normal stress and strain by using the
full three-dimensional constitutive law Eq. (4).

It is first remarked that, in bending-dominated problems, the linear distri-
bution of in-plane strains requires an at least linear transverse normal strain
for consistently representing the Poisson effect, see Eq. (21). Therefore, an
at least quadratic approximation for the transverse displacement is necessary,
i.e., N3 ≥ 2 must be taken in Eq. (6) for avoiding the so-called thickness or
Poisson locking [43]. This condition has been identified through asymptotic
analyses as well [44, 45]. Choosing Nα = N3 − 1 for the in-plane displace-
ment field (α ∈ {1, 2}), allows a consistent representation of the Poisson
coupling in Eq. (21). However, in bending-dominated problems it is often
more important to enhance the transverse shear strain distribution, and the
choice Nα = N3 + 1 would be preferred. A seminal example is given by the
{Nα, N3} = {3, 2} theory of [46]:

uα(x1, x2, z; t) =
3∑
s=0

zs ũsα(x1, x2; t) (34a)

u3(x1, x2, z; t) =
2∑
s=0

zs ũs3(x1, x2; t) (34b)

In closure to this section two Sinus-based high-order kinematics are men-
tioned, which include transverse normal stretch and Zig-Zag effect [47, 48].
These models will be included in the numerical assessment proposed in Sec-
tion 7. In [47], the Zig-Zag effect has been included according to AMT and
does not affect the transverse deflection; the importance of the out-of-plane
deformation has been pointed out in conjunction with thermal stress prob-
lems. The model proposed in [48] introduces the Zig-Zag effect by means of
MZZF; a slope discontinuity is thus included in the out-of-plane deflection,
which has been shown to play a crucial role for a consistent refined modeling
of the piezoelectric bimorph bending actuator.

5. Layer-Wise models

Displacement-based LW models subdivide the composite stack into Nl

layers and introduce the approximated kinematics Eq. (6) for each layer
l = 1, 2, . . . Nl separately:

u
(l)
i (x1, x2, z; t) = Fsi(z)ũ(l)

si
(x1, x2; t) with si = 0, 1, 2, . . . N

(l)
i (35)
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The resulting model for the whole composite stack is thus obtained as an
assembly of LW approximations and the number of unknown functions de-
pends on the number of layers the composite stack has been subdivided into.
The assembly procedure assures the continuity of the displacement field at
the layers’ interfaces. A common choice is to let the layers be coincident
with the physical plies constituting the composite, i.e., to set Nl = Np. For
a refined representation, each physical ply may be decomposed in several
layers, i.e., Nl > Np; alternatively, several physical plies can be grouped into
one layer, which will be referred to as a sublaminate, and in this case one has
Nl < Np.

Reddy’s model is by far the most representative LW model [24, 49, 50]; it
employs Lagrange polynomials for interpolating the displacement field inside
each layer. A linear LW assumption is obtained from the general expression
Eq. (35) as follows

∀i ∈ {1, 2, 3} : Ni = 1; F0i(z) =
1− ζl(z)

2
; F1i(z) =

1 + ζl(z)

2
(36)

where ζl(z) is the layer-specific dimensionless coordinate defined as in Eq.
(33). There are two reasons for preferring a Lagrange interpolation over
Taylor’s expansion: (i) it allows a direct access to the top and bottom dis-
placements and, hence, a straightforward assembly procedure; (ii) it enforces
a mere C0 continuity at layers’ interfaces, which complies with the character-
istic zig-zag effect of composite stacks. Similar to FEM, refined approxima-
tions inside each layer can be introduced by subdividing it into several layers
(h−refinement) or upon enhancing the interpolation order (p−refinement).

Due to their refined description, LW models that retain the full three-
dimensional constitutive behavior permit to obtain a quasi-3D response of
the composite plate, see, e.g., [51]. One of the advantages of LW models over
the standard 3D modeling relies in the less cumbersome two-dimensional
data structure and in the independent approximations that can be used for
the reference surface Ω and the thickness. However, their computational cost
may be high if the composite is composed of a large number of layers.

6. Unified Formulation

As early recognized by Reddy [49], all models discussed so far can be
formally represented by the general expression given in Eq. (35). Note that
ESL models can be obtained from the LW expression Eq. (35) by setting
Nl = 1. A computer program can thus be written in which the parameters
that define the model are let free to be chosen by the user at “run time”.
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This is the underlying idea of Unified Formulations first proposed by Carrera
[52] and that have attracted much interest in view of its great flexibility.

Carrera’s Unified Formulation (CUF) proposes ESL and LW structural
models formulated within the PVD or within RMVT. The displacement field
can be described either as ESL or LW, transverse stresses are always taken
LW. ESL models employ Taylor’s expansion whereas LW models employ
approximating functions defined by Legendre’s polynomials; Zig-Zag models
are formulated by means of MZZF. Furthermore, the same expansion order
is used for all variables involved in the dimensional reduction (displacements
and, for RMVT-based models, transverse stresses), and individual terms of
the expansion may be suppressed through opportune penalizations [53].

Demasi extended CUF to explicitly formulate models in which the order
of expansion can be chosen independently for each displacement/transverse
stress component [54, 55]. In his Generalized Unified Formulation (GUF),
Demasi further provides the possibility of describing some displacement com-
ponents in an ESL manner and others in an LW manner (partially LW mod-
els) [56].

A further extension of GUF has been recently proposed, which introduces
the possibility of subdividing the composite stack into sublaminates, which
means that the ESL/LW description and the expansion order of each variable
can be independently chosen in each sublaminate [57]. The possibility of an
ESL description of the transverse stresses has been accounted for as well. This
so-called Sublaminate-GUF (S-GUF) appears as particularly meaningful for
the modeling of sandwich structures, for which it appears as a natural choice
to formulate “three-layers models”: different assumptions are made for the
behavior of the thin, stiff skins and the thick, compliant core layers [58].

7. Assessment on some benchmark problems

In this last section, several of the previously discussed theories are evalu-
ated and compared on some benchmark problems involving both laminated
and sandwich plates. The accuracy is assessed in terms of long wavelength
response that includes global quantities, such as fundamental natural fre-
quencies and global buckling loads, as well as local quantities, such as point
displacement and stress; the short wavelength response of sandwich wrinkling
is also considered. In order to permit a direct comparison with elasticity
solutions, attention is restricted to rectangular plates with simple-support
conditions and material orthotropy.

Section 7.1 deals with bending and vibration problems with reference to
classical benchmark problems introduced by Pagano [59]. The influence of
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the geometric span-to-thickness ratio a/h on the accuracy of the various ESL
and LW plate models is evaluated.

The elastic instability of sandwich plates subjected to uniaxial compres-
sion is investigated in Section 7.2 in a plane strain setting. The accuracy
of the buckling load and mode predicted by several models is assessed with
respect to the geometric thickness ratio hf/hc and the stiffness ratio Ef/Ec
between the face and core materials.

Due to the large variety of refined ESL models proposed in literature,
it is worthwhile summarizing those employed in the following assessment.
Tab. 1 lists the considered models introducing a unique denomination and
specifying the number of unknown functions (parameters). The proposed
denomination is constituted by an acronym that contains the key properties
of the model according to the presentation in Section 4:

• A “T” followed by two integers for a Taylor-based polynomial expan-
sion of the kinematics; the first integer indicates the order of the in-
plane displacement expansion, the second integer that of the transverse
displacement. The second integer may be zero if the plane stress as-
sumption is retained, or two if the full 3D constitutive law is used.

• An “S” followed by one integer if the Sinus function is used for the
transverse shear; the integer specifies the expansion order of the trans-
verse displacement (as before, either 0 or 2).

• A “Z” is added if the Zig-Zag effect is retained in the in-plane dis-
placements; a “ZZ” is used if the Zig-Zag is retained for the transverse
deflection as well.

• A “C” is added if the transverse shear stress is continuous at interfaces
between plies.

7.1. Bending and vibration of composite plates

Several classical and refined ESL models are assessed with respect to
a long wavelength response of laminated and sandwich plates. The local
response is considered by referring to the classic Pagano problems of simply-
supported rectangular plates bent by a pressure load. The global response is
addressed by referring to the fundamental flexural vibration frequencies. All
presented results are converged FEM solutions computed with robust finite
elements free of numerical pathologies. These solutions are compared against
exact elasticity solutions obtained according to the methods proposed by
Pagano [59] for the bending problem and by Loredo [62] for the free-vibration
problem.
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Acronym ZZT approach Const. law Parameters Ref

Kinematics based on Sinus function
S0 − 2D 5 [35]

S0ZC AMT 2D 5 [60]
S2 − 3D 9 [48]

S2ZC AMT 3D 11 [47]
S2Z MZZF 3D 11 [48]

S2ZZ MZZF 3D 12 [48]

Kinematics based on Taylor expansion
CLPT − 2D 3 [24]
FSDT − 2D 5 [24]

T10ZC RMT 2D 7 [61]
T30 − 2D 9 [37]†

T32 − 3D 11 [46]
T32ZZ MZZF 3D 14 [56]
† kinematics of Eq.(1) in [37]: γα3(z = ±h2 ) = 0 is not enforced.

Table 1: Acronyms and main features of the ESL models used in the assessment.

The proposed assessment aims at comparing the accuracy of classical
CLPT and FSDT models, refined HSDT, and other advanced theories with
particular emphasis on the effect of the following assumptions: inclusion
of Zig-Zag effect on the in-plane displacements only or on all displacement
components; inclusion of Zig-Zag effect with or without accounting for the
interlaminar continuity of the transverse shear stresses; use of the three-
dimensional constitutive law with the inclusion of a through-thickness stretch
through a quadratic expansion along z for the transverse displacement.

Laminated plates. The assessment is here proposed for symmetric and non-
symmetric laminated plates with different length-to-thickness ratios, accord-
ing to the following configurations:

geometry a rectangular plate of in-plane dimensions a×b with b = 3a made
out of two plies of equal thickness h/2;

a square plate a× a made out of three plies of equal thickness h/3;

in either case, the length-to-thickness ratios are S =
a

h
= 4, 10, 100

boundary conditions simply supported on all sides; for the bending prob-
lem, a bi-sinusoidal transverse distributed load is applied at the top
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surface p3(x1, x2, z =
h

2
) = p0 sin

πx1

a
sin

πx2

b

materials cross-ply laminates with stacking sequence (from bottom) (0◦, 90◦)
and (0◦, 90◦, 0◦); engineering moduli of each transversely isotropic ply:
EL = 25 GPa,ET = 1 GPa, νLT = νTT = 0.25, GLT = 0.2 GPa,GTT =
0.5 GPa; mass density ρ = 1500 kg/m3

results displacements and stresses are made non-dimensional according to

Ūα = Uα
ET

p0 h S3
for

{
U1(0, a/2, z)
U2(a/2, 0, z)

Ū3 = U3(a/2, a/2, z)
100 ET
p0 h S4

σ̄αβ = σαβ
1

p0 S2
for

{
σ11(a/2, b/2, z), σ22(a/2, b/2, z)
σ12(0, 0, z)

σ̄α3 = σα3
1

p0 S
for

{
σ13(0, b/2, z)
σ23(a/2, 0, z)

(37a)

The eigenfrequency is made non-dimensional according to

ω̄ = ω
a2

h

√
ET
ρ

(37b)

reference values are the three-dimensional exact elasticity results.

Tab. 2 presents the first natural frequencies (global response) for both
stacking sequences; Tab. 3 and Tab. 4 give displacements and stresses (local
response) for the non-symmetric 2-ply and the symmetric 3-ply laminate,
respectively.

In Tab. 2, all models give accurate results for the thin plate case (S =
100). For S = 10, the error with respect to the reference solution for (2,
3) plies is (0.9, 9.3)% for FSDT and (6.2, 31.8)% for CLPT. Note that the
stacking sequence has an influence on the response of the models. It can be
stated that the classical models are not robust and must be used carefully.
For these moderately thick plates, refined models give error less then 3%. For
the thick case S = 4, the maximum error of the refined models increases up
to 4.5%. The most accurate model is S2ZC. The influence of the expansion
in the transverse direction can be appreciated by comparing S0ZC and S2ZC.
The Zig-Zag effect associated to interlaminar discontinuous transverse shear
deformations could be assessed by looking at S2 and S2Z. Note that S2Z
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2 plies (0◦, 90◦) 3 plies (0◦, 90◦, 0◦)
S 4 10 100 4 10 100

Ref 4.6573 5.9552 6.3675 6.9161 11.457 15.165

S2ZC 4.6640 5.9561 6.3677 6.9205 11.458 15.165
S2ZZ 4.7407 5.9840 6.3681 6.9428 11.461 15.166
S2Z 4.7410 5.9841 6.3682 6.9428 11.461 15.166
S2 4.7874 5.9973 6.3683 7.1021 11.723 15.173

S0ZC 4.8948 6.0353 6.3684 6.9938 11.457 15.165
S0 4.8418 6.0085 6.3681 7.0908 11.745 15.173

FSDT 4.8208 6.0099 6.3682 7.8756 12.527 15.191

CLPT 6.0865 6.3242 6.3716 14.500 15.104 15.226

Table 2: First natural frequency of cross-ply laminates.

and S2ZZ provide practically the same results for both laminates: the Zig-
Zag term in the transverse direction can introduce a discontinuity of the
transverse normal deformation, which could be useful if the ratios Cα3/C33

change between adjacent plies, see Eq. (21). This is not the case here, the
effect of this term is best highlighted in multi-field problems [48].

The local response is presented in Tab. 3 and Tab. 4. For S = 100, the
displacements and in-plane stresses are predicted by all models with similar
accuracy, but transverse shear stress values are very different. Recall that
CLPT neglects these components, while FSDT gives constant values per layer
(no shear correction factors are used throughout this assessment). Therefore,
these models must be used with caution and only for thin plates.

For moderately thick and thick plates, and regarding advanced theories,
the inclusion of the Zig-Zag effect always improves the displacement and
stress results. This can be seen in Tab. 3 and Tab. 4 by comparing the
models S0 and S2 on the one side, with S0ZC and S2ZC or S2ZZ on the other
side. The challenge for these test configurations is related to the obtention
of accurate results for the transverse shear stresses; best results are again
recovered by the S2ZC model, followed by the S2Z (or S2ZZ).

The discrete values at specific locations are proposed to evaluate the accu-
racy of the models. It is, however, very useful to check the whole distribution
across the composite stack also: Fig. 5 reports in-plane and transverse dis-
placements and stresses for the thick, 3-ply symmetric plate. Despite the
difference between S2ZC and S2ZZ was not really obvious in the tables, the
continuity conditions verified only by the former model are clearly visible on
the distribution of the transverse shear stress in Fig. 5 (right bottom). The
distribution of the in-plane displacement Ū1 in Fig. 5 (left top) illustrates the
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Ū1 Ū2 Ū3 σ̄11 σ̄22 σ̄12 σ̄13 σ̄23

z (h/2) (-h/2) (0) (-h/2) (h/2) (h/2) (max) (max)

S=4
Ref -0.0655 0.0271 4.3931 -1.7428 0.3306 -0.0498 0.6401 0.0762

S2ZC -0.0656 0.0271 4.3820 -1.7856 0.3364 -0.0499 0.6492 0.0776
S2ZZ -0.0619 0.0260 4.2388 -1.7161 0.3272 -0.0474 0.6094 0.0805
S2Z -0.0619 0.0260 4.2420 -1.7161 0.3279 -0.0474 0.6099 0.0807
S2 -0.0543 0.0265 4.1733 -1.7803 0.3151 -0.0431 0.5543 0.0892

S0ZC -0.0506 0.0238 3.9500 -1.9625 0.2966 -0.0418 0.4034 0.0648
S0 -0.0569 0.0258 4.1328 -1.9751 0.3093 -0.0456 0.6018 0.0931

FSDT -0.0557 0.0271 4.4873 -1.6129 0.3035 -0.0447 0.4326 0.0665

S=10
Ref -0.0583 0.0211 2.7760 -1.6569 0.2277 -0.0412 0.6903 0.0600

S2ZC -0.0583 0.0211 2.7754 -1.6624 0.2286 -0.0412 0.6921 0.0612
S2ZZ -0.0576 0.0208 2.7492 -1.6585 0.2272 -0.0408 0.6272 0.0811
S2Z -0.0576 0.0208 2.7494 -1.6588 0.2277 -0.0408 0.6275 0.0687
S2 -0.0562 0.0208 2.7378 -1.6721 0.2256 -0.0401 0.5688 0.0759

S0ZC -0.0556 0.0204 2.7092 -1.6940 0.2226 -0.0398 0.4190 0.0579
S0 -0.0566 0.0208 2.7367 -1.6954 0.2250 -0.0404 0.6190 0.0787

FSDT -0.0564 0.0210 2.7889 -1.6357 0.2250 -0.0403 0.4370 0.0532

S=100
Ref -0.0566 0.0196 2.4659 -1.6413 0.2067 -0.0393 0.7020 0.0562

S2ZC -0.0566 0.0196 2.4657 -1.6421 0.2065 -0.0393 0.7022 0.0574
S2ZZ -0.0566 0.0196 2.4656 -1.6470 0.2068 -0.0395 0.6328 0.0667
S2Z -0.0566 0.0196 2.4655 -1.6473 0.2072 -0.0395 0.6330 0.0667
S2 -0.0566 0.0196 2.4653 -1.6474 0.2072 -0.0395 0.5734 0.0736

S0ZC -0.0566 0.0196 2.4653 -1.6416 0.2067 -0.0393 0.4222 0.0562
S0 -0.0566 0.0196 2.4656 -1.6417 0.2067 -0.0393 0.6226 0.0753

FSDT -0.0566 0.0196 2.4661 -1.6411 0.2067 -0.0393 0.4380 0.0501

CLPT -0.0566 0.0196 2.4628 -1.6411 0.2065 -0.0393 - -

Table 3: Bending of the rectangular (0◦, 90◦) laminate under bi-sinusoidal load.
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model Ū1 Ū2 Ū3 σ̄11 −σ̄22 σ̄12 σ̄13 σ̄23

z (h/2) (-h/2) (0) (h/2) (-h/6) (h/2) (0) (0)
S=4
Ref 0.0094 0.0228 2.0059 0.8008 0.5563 0.0505 0.2559 0.2172

S2ZC 0.0097 0.0228 2.0080 0.8086 0.5583 0.0511 0.2556 0.2190
S2ZZ 0.0096 0.0229 1.9950 0.7762 0.5520 0.0494 0.2572 0.1858
S2Z 0.0096 0.0229 1.9950 0.7761 0.5518 0.0493 0.2572 0.1858
S2 0.0095 0.0221 1.9051 0.7705 0.5084 0.0483 0.2118 0.1857

S0ZC 0.0107 0.0218 1.9622 0.8560 0.5838 0.0510 0.2774 0.1494
S0 0.0094 0.0229 1.9345 0.7554 0.5033 0.0507 0.2113 0.1877

FSDT 0.0054 0.0181 1.7758 0.4370 0.4774 0.0369 0.1201 0.1301
S=10

Ref 0.0074 0.0111 0.7530 0.5906 0.2882 0.0290 0.3573 0.1228

S2ZC 0.0074 0.0111 0.7531 0.5915 0.2880 0.0288 0.3573 0.1232
S2ZZ 0.0074 0.0111 0.7526 0.5944 0.2890 0.0287 0.3622 0.1039
S2Z 0.0074 0.0110 0.7526 0.5944 0.2852 0.0289 0.3622 0.1039
S2 0.0073 0.0106 0.7192 0.5885 0.2746 0.0279 0.2745 0.1052

S0ZC 0.0075 0.0110 0.7533 0.5975 0.2908 0.0279 0.3744 0.0859
S0 0.0072 0.0106 0.7180 0.5727 0.2708 0.0279 0.2583 0.1059

FSDT 0.0064 0.0096 0.6693 0.5134 0.2536 0.0252 0.1363 0.0762
S=100

Ref 0.0068 0.0068 0.4347 0.5393 0.1808 0.0214 0.3947 0.0828

S2ZC 0.0068 0.0068 0.4347 0.5393 0.1808 0.0214 0.3947 0.0831
S2ZZ 0.0068 0.0068 0.4347 0.5410 0.1814 0.0214 0.3979 0.0715
S2Z 0.0068 0.0068 0.4347 0.5410 0.1814 0.0214 0.3979 0.0715
S2 0.0068 0.0068 0.4343 0.5409 0.1812 0.0214 0.2987 0.0754

S0ZC 0.0068 0.0068 0.4347 0.5393 0.1808 0.0214 0.4081 0.0600
S0 0.0068 0.0068 0.4343 0.5390 0.1806 0.0214 0.2738 0.0764

FSDT 0.0068 0.0068 0.4337 0.5384 0.1804 0.0213 0.1416 0.0586

CLPT 0.0068 0.0068 0.4313 0.5387 0.1796 0.0213 - -

Table 4: Bending of the square, symmetric (0◦, 90◦, 0◦) laminate under bi-sinusoidal load.
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Figure 5: Local response for the thick (S = 4), square symmetric laminate (0◦, 90◦, 0◦) in
bending: distributions along z of the non-dimensional in-plane and transverse displacement
(top) and in-plane and transverse shear stress (bottom).

Zig-Zag effect; straight lines are associated with CLPT and FSDT, curved
ones to S0 and S2, while all the other models integrating Zig-Zag distributions
are close to the reference black line. Finally, the transverse displacement Ū3

across the thickness is presented in Fig. 5 (right top): this distribution is non
linear, which illustrates the presence of a through-thickness stretch. Models
of the S2-family can capture this effect, contrary to those based on the plane
stress assumption (CLPT, FSDT, S0), which yield vertical straight lines. It
is worth emphasizing that for this last distribution, the error for CLPT is
78.5% and that for FSDT is 11.5%.
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Bending and vibration of a sandwich plate. Global and local response are
next addressed for simply-supported sandwich square plates. The same pat-
tern is followed as for the previously studied laminates: relevant quantities
are the fundamental flexural vibration frequencies (global response) as well
as the displacement and stress distributions (local response) under the action
of a pressure load on the top surface; all presented results are converged FEM
solutions, which are compared against exact elasticity solutions obtained ac-
cording to [59] and [62] for the bending and the free-vibration problems,
respectively.

Sandwich structures show quite a different behavior in comparison to
laminates: the faces carry the primary bending stresses, the core assures the
load transfer between the faces through transverse shear stresses [63]. There-
fore, a Layer-Wise description is often considered as a necessary condition for
recovering accurate results, especially for local responses and depending on
the material (Young’s modulus) and geometric (thickness) mismatch between
faces and core. These parameters will be studied in Section 7.2 in conjunc-
tion with local and global buckling of sandwich structures. In the present
analysis, the face-to-core Young’s modulus ratio is fixed to 625 and the face-
to-core thickness ratio to 0.125. The detail of the considered sandwich plate
configuration is as follows [59]:

geometry sandwich square plate a × a and length-to-thickness ratios S =
a

h
= 4, 10, 100 with core thickness hc = 0.8 h and face hf = 0.1 h

boundary conditions simply supported on all sides; for the bending prob-
lem, a bi-sinusoidal transverse distributed load is applied at the top

surface p3(x1, x2, z =
h

2
) = p0 sin

πx1

a
sin

πx2

b

materials face properties EL = 25 GPa,ET = 1 GPa, νLT = νTT =
0.25, GLT = 0.5 GPa,GTT = 0.2 GPa, ρ = 1500 kg/m3

core properties Eα = 0.04 GPa,E3 = 0.5 GPa, ν12 = 0.25, να3 =
0.02, Gα3 = 0.06 GPa,G12 = 0.016 GPa, ρc = 100 kg/m3

results displacements and stresses are made non-dimensional as in Eq. (37a);
the natural frequency is made non-dimensional with the core properties
according to

ω̄ = ω
a2

h

√
E2

ρc
(38)
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reference values are three-dimensional exact elasticity results.

Tab. 5 presents the first natural frequencies (global response) for different
span-to-thickness ratios. For the thin plate case (S = 100), all models give
accurate results. For S = 10, the error with respect to the reference solution
is 23% and 57% for FSDT and CLPT, respectively. S0 and S2 models present
both an error of 3%, while all models including the Zig-Zag effect are very
accurate with an error less than 0.5%. The same comments are valid for the
thick case S = 4. The following conclusions can be drawn: (i) the Zig-Zag
effect is necessary for obtaining accurate results; (ii) the influence of the
expansion in the transverse direction is less important than for laminates, as
results given by S0 and S2 models are of the same order.

S 4 10 100
Ref 9.0871 17.150 27.147

S2ZC 9.1251 17.187 27.192
S2ZZ 9.1316 17.194 27.192
S2Z 9.1316 17.194 27.192
S2 9.4546 17.698 27.214

S0ZC 9.1108 17.168 27.148
S0 9.4292 17.694 27.171

FSDT 12.233 21.096 27.275

CLPT 18.831 26.918 27.366

Table 5: First natural frequency of the sandwich plate.

Displacement and stress values at relevant points are reported in Tab.
6 (local response). For S = 100, the displacements and maximum bending
stresses in the faces are predicted by all models with similar accuracy. The
transverse shear stress values, taken in the core, are strongly underestimated
by FSDT, which provides only one third of the reference values. Again, CLPT
and FSDT should thus be used with caution and only for displacements and
in-plane stresses of thin sandwich plates. Comparing the models (S0, S2) with
(S0ZC, S2ZC or S2ZZ), Tab. 6 highlights the importance of including the Zig-
Zag effect in advanced theories for moderately thick and thick sandwiches.
The local response also confirms that the inclusion of the transverse stretch
plays a secondary role with respect to the transverse shear deformation.
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Ū1 Ū2 Ū3 σ̄11 −σ̄22 σ̄12 σ̄13 σ̄23

z (-h/2) (-h/2) (0) (h/2) (-h/2) (-h/2) (0) (0)
S=4
Ref 0.0184 0.0758 7.5962 1.5558 0.2533 0.1480 0.2387 0.1072

S2ZC 0.0183 0.0760 7.5883 1.5532 0.2608 0.1481 0.2377 0.1079
S2ZZ 0.0186 0.0827 7.5480 1.5204 0.2596 0.1596 0.2449 0.1089
S2Z 0.0184 0.0759 7.5748 1.5277 0.2699 0.1484 0.2471 0.1124
S2 0.0182 0.0838 7.0220 1.3957 0.1593 0.1602 0.2883 0.1192

S0ZC 0.0190 0.0756 7.6098 1.5589 0.2530 0.1486 0.2573 0.1198
S0 0.0175 0.0713 7.0928 1.4359 0.2382 0.1395 0.2832 0.1211

FSDT 0.0109 0.0469 4.7666 0.8918 0.1562 0.0907 0.1024 0.0448

S=10
Ref 0.0143 0.0313 2.2004 1.1531 0.1099 0.0717 0.2998 0.0527

S2ZC 0.0142 0.0313 2.1946 1.1523 0.1131 0.0715 0.2991 0.0532
S2ZZ 0.0143 0.0323 2.1973 1.1568 0.1192 0.0735 0.3167 0.0553
S2Z 0.0143 0.0313 2.1922 1.1549 0.1147 0.0716 0.3167 0.0566
S2 0.0143 0.0314 2.0731 1.1388 0.0950 0.0718 0.3603 0.0592

S0ZC 0.0144 0.0311 2.1977 1.1555 0.1091 0.0713 0.3225 0.0589
S0 0.0141 0.0293 2.0681 1.1337 0.1034 0.0682 0.3465 0.0598

FSDT 0.0131 0.0221 1.5604 1.0457 0.0798 0.0552 0.1145 0.0245

S=100
Ref 0.0138 0.0140 0.8924 1.0975 0.0550 0.0437 0.3240 0.0297

S2ZC 0.0138 0.0140 0.8895 1.0964 0.0568 0.0435 0.3236 0.0301
S2ZZ 0.0138 0.0140 0.8926 1.1027 0.0561 0.0438 0.3448 0.0316
S2Z 0.0138 0.0140 0.8895 1.1001 0.0570 0.0437 0.3445 0.0323
S2 0.0138 0.0140 0.8912 1.1024 0.0560 0.0438 0.3888 0.0350

S0ZC 0.0138 0.0140 0.8923 1.0975 0.0549 0.0437 0.3483 0.0335
S0 0.0138 0.0140 0.8908 1.0973 0.0549 0.0436 0.3705 0.0355

FSDT 0.0138 0.0139 0.8852 1.0964 0.0546 0.0435 0.1185 0.0178

CLPT 0.0138 0.0138 0.8782 1.0970 0.0543 0.0433 - -

Table 6: Bending of a sandwich square plate under bi-sinusoidal load.
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7.2. Buckling of sandwich struts

Buckling of sandwich struts is investigated in a two-dimensional plane
strain setting (cylindrical bending) in the (x1 z)−plane. The initial stress is
defined in each ply by a uniaxial compression produced by a uniform end
shortening ε0 < 0 of the sandwich section:

N0 =

∫
hp

σ0
p dz =

∫
hp

C
(p)
11 ε

0 dz (39)

The full Green-Lagrange nonlinear strains of Eq. (17) are used for defin-
ing the geometric stiffness matrix. An exact solution along x1 is found by
referring to Navier’s solution method.

The influence of the span-to-thickness ratio a/h on both global and local
response has been investigated previously, this section thus focuses on the role
of the specific ratios characterizing a sandwich plate, namely the thickness
ratio hf/hc and the modulus ratio Ef/Ec between the face material and the
core. Buckling is considered at a long wavelength (global buckling) as well
as at a short wavelength (wrinkling), see Fig. 6. All models assessed in this
section are obtained by the S-GUF software implemented by the authors and
include ESL and LW models: Taylor-based ESL with and without Zig-Zag
effect are considered following the notation introduced in Tab. 1; three-
layers models are constructed as LW assemblies of individual ESL models.
The denomination of three-layers models specifies the ESL model used for
the faces and that used for the core, separated by a slash. It should be noted
that, within S-GUF, the CLPT is obtained from FSDT upon penalizing
the transverse shear strain energy, which means that the same number of
parameters (5) is actually used in both theories. The three-layers models
considered in the assessment are listed in Tab. 7 along with their total
number of parameters.

Figure 6: Global buckling and wrinkling modes of a sandwich strut.

Global buckling. The benchmark for the global buckling of the sandwich strut
is defined as follows:

geometry strut of length a and thickness h = 30mm with a/h = 30; face
thickness defined by hf/h = 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.16, 0.20.
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Acronym (face/core) Parameters
CLPT / FSDT 9
CLPT / T30 13
CLPT / T32 15
FSDT / T32 15

Table 7: Acronyms of the theee-layers models used for the sandwich buckling problems.

boundary conditions simple support at x1 = 0, a.

materials orthotropic Graphite-Epoxy (Gr-Ep) faces: Ef1 = 181GPa,Ef2 =
Ef3 = 10.3GPa,Gf23 = 5.96GPa,Gf13 = Gf12 = 7.17GPa, νf23 =
0.400, νf13 = νf12 = 0.277.

Orthotropic honeycomb core: Ec1 = Ec2 = 32MPa,Ec3 = 300MPa,Gc23 =
Gc13 = 48MPa,Gc12 = 13MPa, νc23 = νc13 = νc12 = 0.25.

Isotropic PVC foam core: νc = 0.3, Ec defined from the face-to-core
stiffness ratio Ef1/Ec = 200, 800, 1600, 2400, 3200, 4000.

results the lowest critical load obtained for a mode characterized by one
half-wave along x1 (m = 1, global buckling) is made non-dimensional
by normalizing it with the Euler load PE of a beam:

P =
Ncr

PE
with PE =

π2

a2

[
Ef1hf

(
h2
f

6
+

(hf + hc)
2

2

)
+ Ec1

h3
c

12

]
(40)

reference values are elasticity solutions provided in [64]

The results in Tab. 8 refer to the Gr-Ep/honeycomb sandwich with vari-
able face-to-core thickness ratio hf/h. An excellent agreement with the ref-
erence solution of [64] is observed for all models that explicitly account for
the representation of the face-core interface, either through a LW descrip-
tion or by means of a Zig-Zag approach. The refined T32 model predicts
non-conservative buckling loads and its accuracy degrades as the face-to-
core thickness ratio increases. The classical FSDT is practically unable to
capture the effect of the face-to-core thickness ratio and provides systemat-
ically a buckling load that is about 95% of the Euler load. From the above
results, it appears that the transverse normal deformation energy does only
play a marginal role for thick cores: the global buckling mode does primarily
involve a transverse shear deformation of the core.

Tab. 9 refers to the Gr-Ep/foam sandwich strut with hf/h = 0.10 and
variable Young’s modulus of the isotropic foam. Reference solutions obtained
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hf/h 0.02 0.04 0.08 0.12 0.16 0.20
Ref 0.7173 0.5692 0.4205 0.3508 0.3161 0.3018

FSDT / T32 0.7172 0.5691 0.4205 0.3509 0.3162 0.3018
CLPT / T32 0.7172 0.5691 0.4206 0.3510 0.3164 0.3022
CLPT / T30 0.7169 0.5690 0.4205 0.3510 0.3164 0.3022
CLPT / FSDT 0.7169 0.5690 0.4205 0.3510 0.3164 0.3022

T32ZZ 0.7172 0.5691 0.4205 0.3509 0.3162 0.3019
T10ZC 0.7169 0.5689 0.4204 0.3508 0.3161 0.3018
T32 0.7491 0.6149 0.5399 0.6082 0.7133 0.8016

FSDT 0.9475 0.9818 0.9483 0.9520 0.9558 0.9596

Table 8: Normalized global buckling load of the Gr-Ep/honeycomb sandwich strut.

Ef1/Ec 200 800 1600 2400 3200 4000
Ref 0.81 0.52 0.35 0.27 0.21 0.18

FSDT / T32 0.8158 0.5252 0.3568 0.2707 0.2183 0.1832
CLPT / T32 0.8163 0.5254 0.3569 0.2708 0.2184 0.1832
CLPT / T30 0.8161 0.5254 0.3569 0.2708 0.2184 0.1833
CLPT / FSDT 0.8161 0.5254 0.3569 0.2708 0.2184 0.1833

T32ZZ 0.8158 0.5253 0.3569 0.2708 0.2184 0.1833
T10ZC 0.8155 0.5251 0.3568 0.2707 0.2184 0.1832
T32 0.8420 0.6449 0.5518 0.5088 0.4841 0.4680

FSDT 0.9573 0.9512 0.9500 0.9496 0.9494 0.9492

Table 9: Normalized global buckling load of the Gr-Ep/foam sandwich strut (hf/h = 0.1).
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with an elasticity approach have been digitally extracted from the graph in
[64] and have thus been reported with only 2 decimal digits. Again, accurate
buckling loads are predicted for the whole range of core’s moduli by LW
and Zig-Zag models. Non-conservative predictions are obtained by the ESL
models T32 and FSDT. The accuracy of the refined T32 model degrades with
the increase of the face-to-core stiffness ratio. On the other hand, FSDT does
barely sense the effect of this ratio and constantly predicts a buckling load
that is only 5% less than the classical Euler load.

Wrinkling. The attention is here focused on the short-wavelength instability
of compressed sandwich struts by referring to the following case study.

geometry sandwich strut with a/h = 10 and hf/h = 0.02 (h = 30mm).

boundary conditions simple support at x1 = 0, a.

materials orthotropic Graphite-Epoxy (Gr-Ep) faces: Ef1 = 181GPa,Ef2 =
Ef3 = 10.3GPa,Gf23 = 5.96GPa,Gf13 = Gf12 = 7.17GPa, νf23 =
0.400, νf13 = νf12 = 0.277.

Isotropic PVC foam core: νc = 0.3, Ec defined by the ratio Ef1/Ec =
200, 800.

results non-dimensional critical load defined in Eq. (40) as a function of
h/λ, where λ = a/m is the half-wavelength and m the number of half-
waves of the periodic buckling mode along x1.

reference values are obtained by means of a quasi-3D model [65]

Only those models that perform well in the global buckling analysis are
assessed in the short wavelength wrinkling problem. Fig. 7 reports the
response of the sandwich strut made out of Gr-Ep faces and an isotropic
core with Ef1/Ec = 200 (left) and Ef1/Ec = 800 (right). Non-dimensional
global buckling and wrinkling loads are reported in Tab. 10. The funda-
mental wrinkling mode of a sandwich strut with an isotropic core is known
to be antisymmetric, symmetric modes are always associated to higher loads
[65]. From both graphics it can be seen that all models predict accurately the
global buckling load (m = 1→ λ = a = 10h), but that their response is more
disparate for shorter wavelengths, i.e., increasing h/λ ratios. Models incorpo-
rating the transverse normal deformation of the core are capable of grasping
a local minimum of the response at short wavelengths, which corresponds
to the wrinkling load. On the other hand, it is not possible for the models
based on the plane-stress assumption to capture the wrinkling response. The
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CLPT/FSDT model has not been included in Fig. 7 for it yields very similar
results as CLPT/T30. A hierarchic accuracy can be appreciated: the three-
layers model FSDT/T32 is indistinguishable from the reference solution up
to very short wavelengths (λ > h/2); furthermore, employing CLPT instead
of FSDT in the faces introduces some minor discrepancies only for λ < h/3;
finally, the ESL model T32ZZ differs from the reference solution already for
λ < 5h and it predicts a non-conservative wrinkling load that is more than
30% higher than the reference value.

As a closing remark, note that the wrinkling results fully substantiate
Koiter’s recommendation, for they confirm that the transverse normal de-
formation is necessary for capturing the short wavelength response, i.e., for
enhancing the accuracy of two-dimensional shell/plate models.

FSDT / T32
CLPT / T32
CLPT / T30

T32ZZ
T10ZC
Ref

Ef1/Ec = 200

P/
P E

0

0,5

1,0

1,5

2,0

h/λ
0,1 1 10

FSDT / T32
CLPT / T32
CLPT / T30

T32ZZ
T10ZC
Ref

Ef1/Ec = 800

P/
P E

0

0,5

1,0

1,5

h/λ
0,1 1 10

Figure 7: Non-dimensional buckling loads vs wavelength parameter h/λ for a Gr-Ep /
foam sandwich strut (a/h = 10, hf/h = 0.02) with Ef1/Ec = 200 and Ef1/Ec = 800.

Ef1/Ec 200 800
PG PW (m) PG PW (m)

Ref 0.6604 0.7767 (47) 0.3344 0.2948 (27)

FSDT / T32 0.6603 0.8419 (42) 0.3344 0.3001 (26)
CLPT / T32 0.6604 0.8757 (38) 0.3344 0.3056 (25)
CLPT / T30 0.6584 – – 0.3342 – –
CLPT / FSDT 0.6585 – – 0.3342 – –

T32ZZ 0.6605 1.0564 (53) 0.3348 – –
T10ZC 0.6584 – – 0.3342 – –

Table 10: Nondimensional global buckling (PG) and wrinkling loads (PW ) of the Gr-
Ep/foam sandwich strut (a/h = 10, hf/h = 0.02). Numbers in parentheses indicate the
number of half-waves m at wrinkling.
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Appendix A. Beam models

Beam structures1 are slender bodies that are loaded in the most general,
three-dimensional, case by axial and shear forces as well as bending and
torsion moments. As outlined in Section 1, a beam model is formulated
by taking advantage of the slenderness and it consists of (i) a closed set of
PDE or ODE that depends on only one independent variable (the coordinate
along the beam axis); (ii) the definition of the stiffnesses of the cross-sectional
surface, which in turn depend on the geometric and material properties; (iii)
some relations for recovering the stress state in any point of the body from
the solution of the one-dimensional problem. The key point is thus to define
the cross-sectional deformation, generally referred to as warping, and various
approaches have been followed for accomplishing this task.

The classical axiomatic approach is referred to as the Saint-Venant the-
ory: based on static assumptions (stresses perpendicular to the beam axis
are nil), it considers a cross-section that remains plane when the beam is
loaded by axial force and bending moments, but that is free to warp uni-
formly out of its plane under the action of a torsion moment and shearing
forces. In-plane warping is included in Saint-Venant’s theory through the
Poisson effect. Classical beam theories such as Euler-Bernoulli’s or Timo-
shenko’s are formulated within the framework of Saint-Venant’s approach
upon introducing further restrictive assumptions that limit the out-of-plane
warping to torsional deformation: a rigid cross-section is thus postulated for
the extension, bending and - within Timoshenko’s theory - shearing, while
uniform Saint-Venant’s warping is retained for torsion.

Refined models that go beyond Saint-Venant’s theory are required in
presence of non-uniform (restrained) warping [67], which typically occurs in
thin-walled beams, or whenever a short wavelength response is to be evalu-
ated [68, 69]. Furthermore, composite cross-sections require high-order warp-
ing functions for including the elastic couplings between extension, bending,
shearing and torsion, which are of utmost importance in a number of specific
and complex applications such as beam models for helicopter rotor blades.
In this context, it is worth mentioning the early work by Giavotto et al

1Following Antman [7], such structural members are also called “rods”. “Column”
or “truss” most often indicate a beam that is subjected to only axial loads, the latter
term being preferred for geometrically linear formulations. So, “beam-columns” indicate
one-dimensional structures subjected to axial and lateral loads simultaneously [66].

47



[70], in which Saint-Venant’s theory was enriched through warping functions
obtained from a cross-sectional finite-element analysis, as well as the uni-
fied, nonlinear approach of Hodges and coworkers summarized in [71]. The
framework of this latter approach is Berdichevsky’s Variational-Asymptotic
Method [72], which allows to formulate one-dimensional beam models with
high-order warping functions and whose accuracy is defined in an asymptotic
sense, see also [73–75].

The remainder of this Appendix will limit the attention to composite
beam models without considering torsion, i.e., for which out-of-plane warping
may be induced under bending load due to the transverse shear flexibility
of the composite cross-section. For the sake of conciseness, complicating
effects such as taper ratio, initial twist and curvature, and thin-walled open
cross-sections will be left out of the scope.

Straight prismatic beams are considered that occupy the volume V =
S × [0, L], where L is the length of the beam measured along the x1 axis and
S is the cross-section in the (x2, x3)-plane. Let further the cross-section S be
rectangular of dimension b×h and composed of Np plies, where h =

∑Np
p=1 h

(p)

is the thickness measured along the x3 = z coordinate and b is the width
measured along the x2 = y coordinate. The procedure for constructing the
reduced one-dimensional model starting from the elasticity relations can be
still formally introduced as in Section 2, but the two-dimensional domain
Ω has to be replaced by the one-dimensional domain x1 ∈ {0, L} and the
thickness direction z by the two-dimensional cross-section (y, z) ∈ S. The
kinematic approximations are thus introduced into Hamilton’s principle as

ui(x1, x2, x3; t) = Fsi(y, z)ũsi(x1; t) with si = 0, 1, 2, . . . Ni (A-1)

and the differentiations and integrations of Eq. (9) can be explicitly carried
out over S.

Appendix A.1. Classical theories

Classical theories rely on the hypothesis of an infinitely rigid cross-section
thus decoupling bending and torsion. In analogy to the CLPT and FSDT
theories for plates, one discerns the Euler-Bernoulli Beam Theory (EBBT)
and the Timoshenko Beam Theory (TBT) that are next described.

Euler-Bernoulli Beam Theory. The EBBT can be formulated according to
following kinematic assumption:

1. the cross-section is infinitely rigid in its plane.

2. the cross-section remains plane and perpendicular to the beam axis dur-
ing deformation.
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The first assumption states that no stress nor deformation exist in the cross-
sectional (y, z)−plane, that is, a one-dimensional constitutive relation is used
for relating the axial strain and the axial stress. The planarity of the cross-
section enforces a linear distribution of the displacement field across S, i.e.,
the displacement field is constructed as a superposition of an axial displace-
ment and a rigid rotation of S. The perpendicularity condition states the
equivalence between the rotations of the cross-section and the slope of the
deformed beam axis, which means that the transverse shear strains γxy and
γxz are nil. One notices the correspondence with the CLPT discussed in Sec-
tion 3.1 and illustrated in Fig. 2(b). The displacement field for the EBBT
thus reads

u1(x1, y, z; t) = ũ01(x1; t)− y ∂ũ02(x1; t)

∂x1

− z ∂ũ03(x1; t)

∂x1

(A-2a)

u2(x1, y, z; t) = ũ02(x1; t); u3(x1, y, z; t) = ũ03(x1; t) (A-2b)

Note that only 3 unknown functions suffice to express the EBBT kinematics,
which correspond to the displacement vector [ũ01 , ũ02 , ũ03 ] of a generic point
of the beam axis x1.

Timoshenko Beam Theory. TBT extends EBBT upon introducing a trans-
verse shear strain field that is constant across S, and it relies on following
kinematic assumptions:

1. the cross-section is infinitely rigid in its plane.

2. the cross-section remains plane during deformation.

Based on these assumptions, the displacement field for the TBT in the three-
dimensional space can be written as

u1(x1, y, z; t) = ũ01(x1; t) + y ũ11(x1; t) + z ũ21(x1; t) (A-3a)

u2(x1, y, z; t) = ũ02(x1; t); u3(x1, y, z; t) = ũ03(x1; t) (A-3b)

The 5 unknown functions that define the TBT kinematics are thus the dis-
placement vector ũ0i of a point on the beam axis and the rotations ũ11 and
ũ21 about the z and y axes, respectively, of the rigid cross-section. Note the
correspondence with the FSDT discussed in Section 3.2 and illustrated in Fig.
2(c). Shear correction coefficients can be included for reducing the transverse
shear deformation energy predicted by the uniform transverse shear stresses
of TBT.
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Appendix A.2. Refined theories

Refinements to the previously outlined classical theories are formulated
upon relaxing the assumption of a rigid cross-section, i.e., including a warp-
ing deformation that - in the present context that neglects torsion - is due
to transverse shear strains. In the following and in view of the numerical
assessment proposed in Appendix A.3, the discussion shall be limited to
refined theories formulated within the framework of the Sinus-model. The
HSDT kinematics reads

u1(x1, y, z; t) = ũ01(x1; t)− y ∂ũ02(x1; t)

∂x1

+ f(y)

(
ũ11(x1; t) +

∂ũ02(x1; t)

∂x1

)
−z ∂ũ03(x1; t)

∂x1

+ f(z)

(
ũ21(x1; t) +

∂ũ03(x1; t)

∂x1

)
(A-4a)

u2(x1, y, z; t) = ũ02(x1; t); u3(x1, y, z; t) = ũ03(x1; t) (A-4b)

where one retrieves EBBT and TBT by setting f(y) = f(z) = 0 and f(y) =
y, f(z) = z, respectively, while for a Sinus-theory one sets

f(y) =
h

π
sin
(πy
b

)
; f(z) =

h

π
sin
(πz
h

)
(A-5)

In case of beam problems defined in the (x1, z)−plane, the kinematics Eq.
(A-4) reduces simply to

u1(x1, y, z; t) = ũ01(x1; t)

− z ∂ũ03(x1; t)

∂x1

+ f(z)

(
ũ21(x1; t) +

∂ũ03(x1; t)

∂x1

)
(A-6a)

u3(x1, y, z; t) = ũ03(x1; t) (A-6b)

Zig-Zag theories can be formulated which account for the slope disconti-
nuity of the axial displacement u1 along the stacking direction x3 = z. For
this, one may directly superimpose Murakami’s Zig-Zag Function (MZZF)
defined in Eq. (33) to the HSDT kinematics, see [76]; alternatively, the slope
discontinuity is introduced by fulfilling the Interlaminar Continuity of the
transverse shear stress - see the AMT approach outlined in Section 4.2 and
the formulation presented in [77, 78]. One may note that the dependence on
the x2 = y coordinate remains unaffected in either case because the plies are
assumed to be stacked along x3 = z only.

All theories mentioned above retain the static assumption of Saint-Venant’s
theory, which calls for the use of the one-dimensional constitutive law for
plane stress. The full three-dimensional constitutive law can be employed
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upon retaining the direct stresses in the cross-sectional plane and following
the same arguments outlined in Section 4.3. In the case of a plane problem,
the HSDT of Eq. (A-6) can be enhanced with a quadratic expansion for the
transverse displacement as follows [79]

u1(x1, y, z; t) = ũ01(x1; t)

− z ∂ũ03(x1; t)

∂x1

+ f(z)

(
ũ21(x1; t) +

∂ũ03(x1; t)

∂x1

)
(A-7a)

u3(x1, y, z; t) = ũ03(x1; t) + z ũ13(x1; t) + z2 ũ23(x1; t) (A-7b)

All beam theories discussed above have a number of unknown functions
that is independent of the number of plies constituting the composite cross-
section. Refined Layer-Wise beam models are obtained in the very same
manner as mentioned in Section 5 and lead to models with a number of
unknown functions and, hence, DOF that depends on the number of the
considered layers.

Carrera’s Unified Formulation (CUF) permits to build classical and re-
fined beam models, based on ESL or LW descriptions, in the same way as
outlined in Section 6 by directly employing the generic expansion given in
Eq. (A-1): the cross-section S is discretized in a number τ = 1, 2, . . . N of
points that are interpolated by a given polynomial basis Fτ (y, z) (Taylor,
Lagrange, Legendre, . . . ), and the solution of each point uτ is only depen-
dent on the axial coordinate, i.e., uτ = uτ (x1). The interested reader may
consult [80], a book entirely dedicated to the description of Carrera’s Unified
Formulation for beam structures. It is emphasized that CUF can be effec-
tively employed for determining, in a combined axiomatic-asymptotic sense,
the ”best” model for a given application, i.e., the model of lowest order that
provides with a predefined accuracy a specific result for a specific problem.
The specific result may be related to global or local response, and the specific
problem is defined by geometry, material, boundary and loading conditions.

Appendix A.3. Assessment on some benchmark problems

The same benchmark configurations addressed for the assessment of plate
models in Section 7 are here employed to assess several classical and refined
ESL theories based on the Sinus model. The different models are identified
following the same naming convention summarized in Tab. 1. The proposed
assessment concerns the effect of the length-to-thickness ratio S = a/h for
straight beam problems in the (x1, z)−plane. Non-dimensional fundamental
frequencies for the simply-supported non-symmetric 2-ply and symmetric
3-ply laminated beams are displayed in Tab. A.11. The non-dimensional
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static response of simply-supported beams subjected to the sinusoidal load
p3(x1, z = h

2
) = p0 sin πx1

a
are given in Tab. A.12 for the 2-ply laminate and in

Tab. A.13 for the 3-ply laminate. The reported non-dimensional quantities
are defined according to Eq. (37). Results for simply-supported sandwich
beams are displayed in Tab. A.14 (non-dimensional fundamental frequencies
defined by Eq. (38)) and Tab. A.15 (static response defined according to
Eq. (37a)).

2 plies (0◦, 90◦) 3 plies (0◦, 90◦, 0◦)
S 4 10 100 4 10 100

Ref 4.5105 5.7700 6.1672 5.8545 10.334 13.930

S2ZC 4.5525 5.7827 6.1673 5.8569 10.335 13.931
S2 4.6390 5.8104 6.1712 6.0488 10.599 13.940

S0ZC 4.8284 5.8580 6.1682 5.9758 10.345 13.930
S0Z 4.6169 5.8029 6.1676 5.9660 10.417 13.932
S0 4.7040 5.8254 6.1678 6.0502 10.629 13.939

FSDT 4.6784 5.8254 6.1678 6.8997 11.418 13.955

CLPT 5.9253 6.1305 6.1712 13.644 13.933 13.989

Table A.11: First natural frequency of simply-supported cross-ply laminated beams.

It is apparent that the comments made in Section 7 for the plate prob-
lem assessments are valid for the considered plane beam problems as well.
Classical theories (EBBT, TBT) can be employed for thin beams (S = 100),
for all models yields very similar results in this case. When dealing with
moderately thick (S = 10) and thick (S = 4) beams, the results show that
the most accurate model is S2ZC: on the one hand, the Zig-Zag effect is
required for capturing the effects introduced by the layers’ interfaces within
the composite stack, on the other hand, the three-dimensional constitutive
law should be retained for including the transverse normal deformation en-
ergy, which is no longer negligible when the beam is thick (S = 4). These
conclusions demonstrate once again the validity of Koiter’s recommendation
[31] (see Section 4) in the case of composite structures.
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−Ū1 Ū3 −σ̄11 σ̄13

z (h/2) (0) (-h/2) (max)

S=4
Ref 0.0714 4.7081 1.8762 0.6764

S2ZC 0.0720 4.6231 1.9367 0.6371
S2 0.0546 4.2833 1.8087 0.5838

S0ZC 0.0544 4.1878 2.0958 0.4193
S0Z 0.0722 4.5438 1.9903 0.6918
S0 0.0613 4.4027 2.1200 0.6297

FSDT 0.0603 4.4347 1.7496 0.4547

S=10
Ref 0.0623 2.9611 1.7652 0.7230

S2ZC 0.0623 2.9481 1.7750 0.6687
S2 0.0582 2.8445 1.7450 0.6021

S0ZC 0.0593 2.8836 1.8068 0.4331
S0Z 0.0623 2.9374 1.7872 0.7039
S0 0.0604 2.9156 1.8101 0.6426

FSDT 0.0603 2.6254 1.7496 0.4547

S=100
Ref 0.0603 2.6288 1.7443 0.7337

S2ZC 0.0602 2.6160 1.7373 0.6763
S2 0.0601 2.6173 1.7413 1.5774

S0ZC 0.0603 2.6280 1.7502 0.4358
S0Z 0.0603 2.6285 1.7500 0.7064
S0 0.0603 2.6283 1.7502 0.6451

FSDT 0.0603 2.6283 1.7496 0.4547

CLPT 0.0603 2.6255 1.7496 -

Table A.12: Bending of the simply-supported (0◦, 90◦) beam under sinusoidal load.
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model −Ū1 Ū3 −σ̄11 σ̄13

z (h/2) (0) (-h/2) (0)
S=4
Ref 0.0148 2.8901 1.1304 0.3580

S2ZC 0.0146 2.8913 1.1871 0.3545
S2 0.0135 2.6853 1.0974 0.2950

S0ZC 0.0158 2.7916 1.2469 0.3855
S0Z 0.0155 2.8027 1.2224 0.3363
S0 0.0139 2.7258 1.0974 0.2904

FSDT 0.0080 2.0941 0.6324 0.1592

S=10
Ref 0.0094 0.9332 0.7361 0.4239

S2ZC 0.0093 0.9331 0.7374 0.4336
S2 0.0090 0.8719 0.7250 0.3254

S0ZC 0.0095 0.9321 0.7459 0.4450
S0Z 0.0095 0.9193 0.7519 0.4043
S0 0.0090 0.8828 0.7105 0.3048

FSDT 0.0080 0.7642 0.6324 0.1592

S=100
Ref 0.0080 0.5153 0.6315 0.4421

S2ZC 0.0080 0.5128 0.6289 0.4556
S2 0.0080 0.5131 0.6317 0.4497

S0ZC 0.0080 0.5153 0.6335 0.4583
S0Z 0.0080 0.5151 0.6336 0.4225
S0 0.0080 0.5147 0.6331 0.3076

FSDT 0.0078 0.5135 0.6324 0.1561

CLPT 0.0080 0.5109 0.6324 -

Table A.13: Bending of the simply-supported (0◦, 90◦, 0◦) beam under sinusoidal load.
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S 4 10 100
Ref 7.6880 15.677 25.335

S2ZC 7.9322 16.022 25.358
S2 8.0566 16.201 25.368

S0ZC 7.7196 15.702 25.336
S0Z 7.9807 16.074 25.351
S0 8.0750 16.240 25.359

FSDT 11.133 19.656 25.458

CLPT 24.292 25.333 25.545

Table A.14: First natural frequency of the simply-supported sandwich beam.
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Ū1 Ū3 σ̄11 σ̄13

z (-h/2) (0) (h/2) (0)
S=4
Ref 0.0299 11.061 2.3841 0.3392

S2ZC 0.0288 10.408 2.2999 0.4153
S2 0.0276 10.067 2.2263 0.4064

S0ZC 0.0305 11.028 2.3995 0.3655
S0Z 0.0297 10.315 2.3384 0.4094
S0 0.0276 10.076 2.1730 0.3942

FSDT 0.0158 5.2869 1.2476 0.1290

S=10
Ref 0.0182 2.6688 1.4317 0.3504

S2ZC 0.0180 2.5563 1.4186 0.4286
S2 0.0176 2.4785 1.4075 0.4192

S0ZC 0.0182 2.6621 1.4378 0.3771
S0Z 0.0182 2.5397 1.4282 0.4218
S0 0.0178 2.4878 1.3986 0.4020

FSDT 0.0158 1.6927 1.2476 0.1291

S=100
Ref 0.0159 1.0248 1.2456 0.3526

S2ZC 0.0158 1.0229 1.2465 0.4312
S2 0.0158 1.0201 1.2478 0.5062

S0ZC 0.0159 1.0247 1.2496 0.3794
S0Z 0.0159 1.0235 1.2465 0.4243
S0 0.0159 1.0229 1.2492 0.4035

FSDT 0.0158 1.0149 1.2476 0.1291

CLPT 0.0158 1.0081 1.2476 -

Table A.15: Bending of the simply-supported sandwich beam under sinusoidal load.
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