Optimal Quantization : Evolutionary Algorithm vs Stochastic Gradient - Université Paris Nanterre
Communication Dans Un Congrès Année : 2006

Optimal Quantization : Evolutionary Algorithm vs Stochastic Gradient

Résumé

We propose a new method based on evolutionary optimization for obtaining an optimal L p-quantizer of a multidimen-sional random variable. First, we remind briefly the main results about quantization. Then, we present the classical gradient-based approach (this approach is well detailed in [2] and [7] for p=2) used up to now to find a "local" optimal L p-quantizer. Then, we give an algorithm that permits to deal with the problem in the evolutionary optimization framework and illustrate a numerical comparison between the proposed method and the stochastic gradient method. Finally, a numerical application to option pricing in finance is provided.
Fichier principal
Vignette du fichier
Optimal_Quantization_paper_JCIS.pdf (195.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02490713 , version 1 (27-11-2021)

Identifiants

Citer

Sana Ben Hamida, Moez Mrad. Optimal Quantization : Evolutionary Algorithm vs Stochastic Gradient. 9th Joint Conference on Information Sciences, Oct 2006, Amsterdam, Netherlands. ⟨10.2991/jcis.2006.161⟩. ⟨hal-02490713⟩
14 Consultations
42 Téléchargements

Altmetric

Partager

More