Dual‐Polarized Tri‐Channel Encrypted Holography Based on Geometric Phase Metasurface - Université Paris Nanterre Accéder directement au contenu
Article Dans Une Revue Advanced Photonics Research Année : 2020

Dual‐Polarized Tri‐Channel Encrypted Holography Based on Geometric Phase Metasurface

Yue Wang
  • Fonction : Auteur
Chunsheng Guan
  • Fonction : Auteur
Haoyu Li
  • Fonction : Auteur
Xumin Ding
Kuang Zhang
  • Fonction : Auteur
Jinxiang Wang
  • Fonction : Auteur
Jian Liu
  • Fonction : Auteur
Qun Wu
  • Fonction : Auteur

Résumé

Metasurface‐based encrypted holography has drawn much attention recently due to its excellent ability in storing/displaying information with good security. To enhance the encryption security of metasurface holograms, multiplexing techniques, for which a large number of parameters need to be scanned to achieve the desired meta‐atoms, are highly demanded. Herein, a metasurface design scheme, which utilizes solely geometric phase elements to manipulate both co‐ and cross‐polarized reflected fields independently, is proposed. Using an improved weighted Gerchberg–Saxton (GSW), a holographic algorithm is proposed for 1‐bit phase, dual‐polarized tri‐channel encrypted metamirrors. Proof‐of‐concept prototypes are fabricated and experimental demonstrations are performed at microwave frequencies. Simulations and measurements are carried out to validate the proposed design, and the results agree well with the theoretical design scheme. Such dual‐polarized and tri‐channel encrypted metamirrors are appealing for applications in polarimetric imaging, information encryption/storage and beam splitting, shaping and steering.

Dates et versions

hal-04214287 , version 1 (21-09-2023)

Identifiants

Citer

Yue Wang, Chunsheng Guan, Haoyu Li, Xumin Ding, Kuang Zhang, et al.. Dual‐Polarized Tri‐Channel Encrypted Holography Based on Geometric Phase Metasurface. Advanced Photonics Research, 2020, 1 (2), ⟨10.1002/adpr.202000022⟩. ⟨hal-04214287⟩
2 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More